Parametrizace vstupu při trénování HVS sémantického parseru
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F07%3A00000341" target="_blank" >RIV/49777513:23520/07:00000341 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Parameterization of the Input in Training the HVS Semantic Parser
Popis výsledku v původním jazyce
The aim of this paper is to present an extension of the hidden vector state semantic parser. First, we describe the statistical semantic parsing and its decomposition into the semantic and the lexical model. Subsequently, we present the original hidden vector state parser. Then, we modify its lexical model so that it supports the use of the input sequence of feature vectors instead of the sequence of words. We compose the feature vector from the automatically generated linguistic features (lemma form and morphological tag of the original word). We also examine the effect of including the original word into the feature vector. Finally, we evaluate the modified semantic parser on the Czech Human-Human train timetable corpus. We found that the performanceof the semantic parser improved significantly compared with the baseline hidden vector state parser.
Název v anglickém jazyce
Parameterization of the Input in Training the HVS Semantic Parser
Popis výsledku anglicky
The aim of this paper is to present an extension of the hidden vector state semantic parser. First, we describe the statistical semantic parsing and its decomposition into the semantic and the lexical model. Subsequently, we present the original hidden vector state parser. Then, we modify its lexical model so that it supports the use of the input sequence of feature vectors instead of the sequence of words. We compose the feature vector from the automatically generated linguistic features (lemma form and morphological tag of the original word). We also examine the effect of including the original word into the feature vector. Finally, we evaluate the modified semantic parser on the Czech Human-Human train timetable corpus. We found that the performanceof the semantic parser improved significantly compared with the baseline hidden vector state parser.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/1M0567" target="_blank" >1M0567: Centrum aplikované kybernetiky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2007
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Artificial Intelligence
ISBN
978-3-540-74627-0
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
—
Název nakladatele
Springer
Místo vydání
Berlin
Místo konání akce
Pilsen
Datum konání akce
7. 9. 2007
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000251315900053