Otevřenost a diferencovatelnost zobrazení
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F08%3A00501247" target="_blank" >RIV/49777513:23520/08:00501247 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Openness and differentiability of mappings
Popis výsledku v původním jazyce
We prove a generalization of the well-known Robinson-Ursescu Theorem and of Graves' Theorem in case that the set of admissible solutions is not the whole space but the closed convex set only. We explore the relationship between the openness of a nonlinear mapping and the openness of its suitable linear approximation We illustrate several application: the optimization theory, the constrained local controllability of nonlinear dynamical systems, and finding a differentiable selection of the inverse mapping; in the fifth chapter. We prove that if the norm on a Banach space in question is both differentiable and locally uniformly rotund, then the infimal convolution is differentiable on a residual set, provided that it is attained at densely many points.
Název v anglickém jazyce
Openness and differentiability of mappings
Popis výsledku anglicky
We prove a generalization of the well-known Robinson-Ursescu Theorem and of Graves' Theorem in case that the set of admissible solutions is not the whole space but the closed convex set only. We explore the relationship between the openness of a nonlinear mapping and the openness of its suitable linear approximation We illustrate several application: the optimization theory, the constrained local controllability of nonlinear dynamical systems, and finding a differentiable selection of the inverse mapping; in the fifth chapter. We prove that if the norm on a Banach space in question is both differentiable and locally uniformly rotund, then the infimal convolution is differentiable on a residual set, provided that it is attained at densely many points.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2008
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů