Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Refinement approach for adaptation based on combination of MAP and fMLLR

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F09%3A00501702" target="_blank" >RIV/49777513:23520/09:00501702 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Refinement approach for adaptation based on combination of MAP and fMLLR

  • Popis výsledku v původním jazyce

    This paper deals with a combination of basic adaptation techniques of Hidden Markov Model used in the speech recognition. The adaptation methods approach the data only through their statistics, which have to be accumulated before the adaptation process.When performing two adaptations subsequently, the data statistics have to be accumulated twice in each of the adaptation passes. However, when the adaptation methods are chosen with care, the data statistics may be accumulated only once, as proposed in this paper. This significantly reduces the time consumption and avoids the need to store all the adaptation data. Combination of Maximum A-Posteriori Probability and feature Maximum Likelihood Linear Regression adaptation is considered. Motivation for such an approach could be the on-line adaptation, where the time consumption is of big importance.

  • Název v anglickém jazyce

    Refinement approach for adaptation based on combination of MAP and fMLLR

  • Popis výsledku anglicky

    This paper deals with a combination of basic adaptation techniques of Hidden Markov Model used in the speech recognition. The adaptation methods approach the data only through their statistics, which have to be accumulated before the adaptation process.When performing two adaptations subsequently, the data statistics have to be accumulated twice in each of the adaptation passes. However, when the adaptation methods are chosen with care, the data statistics may be accumulated only once, as proposed in this paper. This significantly reduces the time consumption and avoids the need to store all the adaptation data. Combination of Maximum A-Posteriori Probability and feature Maximum Likelihood Linear Regression adaptation is considered. Motivation for such an approach could be the on-line adaptation, where the time consumption is of big importance.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    JD - Využití počítačů, robotika a její aplikace

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2009

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Text, Speech and Dialogue

  • ISBN

    978-3-642-04207-2

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    8

  • Strana od-do

  • Název nakladatele

    Springer Verlag

  • Místo vydání

    Berlin

  • Místo konání akce

    Plzeň

  • Datum konání akce

    17. 9. 2009

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000270445700037