Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Discriminative adaptation based on fast combination of DMAP and DfMLLR

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F10%3A00504560" target="_blank" >RIV/49777513:23520/10:00504560 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Discriminative adaptation based on fast combination of DMAP and DfMLLR

  • Popis výsledku v původním jazyce

    This paper investigates the combination of discriminative adaptation techniques. The discriminative Maximum A-Posteriori (DMAP) adaptation and discriminative feature Maximum Likelihood Linear Regression (DfMLLR) are examined. Since each of the methods isproposed for distinct amount of adaptation data it is useful to combine them in order to preserve the systems performance in situations with varying amount of adaptation data. Generally, DfMLLR and DMAP are executed subsequently (DMAP preceded by DfMLLR) demanding to approach the data twice. Since both methods address the data through the same statistics an one-pass-combination was proposed in order to decrease the time consumption. The one-pass-combination utilizes the advantage of DfMLLR method to transform directly the feature vectors. However, instead of feature vectors the statistics are transformed, what allows to use already computed statistics for the DMAP pass without the need to process the data once again. All the approaches

  • Název v anglickém jazyce

    Discriminative adaptation based on fast combination of DMAP and DfMLLR

  • Popis výsledku anglicky

    This paper investigates the combination of discriminative adaptation techniques. The discriminative Maximum A-Posteriori (DMAP) adaptation and discriminative feature Maximum Likelihood Linear Regression (DfMLLR) are examined. Since each of the methods isproposed for distinct amount of adaptation data it is useful to combine them in order to preserve the systems performance in situations with varying amount of adaptation data. Generally, DfMLLR and DMAP are executed subsequently (DMAP preceded by DfMLLR) demanding to approach the data twice. Since both methods address the data through the same statistics an one-pass-combination was proposed in order to decrease the time consumption. The one-pass-combination utilizes the advantage of DfMLLR method to transform directly the feature vectors. However, instead of feature vectors the statistics are transformed, what allows to use already computed statistics for the DMAP pass without the need to process the data once again. All the approaches

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    JD - Využití počítačů, robotika a její aplikace

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2010

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Interspeech 2010

  • ISBN

    978-1-61782-123-3

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    4

  • Strana od-do

  • Název nakladatele

    Curran Associates

  • Místo vydání

    Red Hook

  • Místo konání akce

    Makuhari, Chiba, Japonsko

  • Datum konání akce

    1. 1. 2010

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku