Discriminative adaptation based on fast combination of DMAP and DfMLLR
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F10%3A00504560" target="_blank" >RIV/49777513:23520/10:00504560 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Discriminative adaptation based on fast combination of DMAP and DfMLLR
Popis výsledku v původním jazyce
This paper investigates the combination of discriminative adaptation techniques. The discriminative Maximum A-Posteriori (DMAP) adaptation and discriminative feature Maximum Likelihood Linear Regression (DfMLLR) are examined. Since each of the methods isproposed for distinct amount of adaptation data it is useful to combine them in order to preserve the systems performance in situations with varying amount of adaptation data. Generally, DfMLLR and DMAP are executed subsequently (DMAP preceded by DfMLLR) demanding to approach the data twice. Since both methods address the data through the same statistics an one-pass-combination was proposed in order to decrease the time consumption. The one-pass-combination utilizes the advantage of DfMLLR method to transform directly the feature vectors. However, instead of feature vectors the statistics are transformed, what allows to use already computed statistics for the DMAP pass without the need to process the data once again. All the approaches
Název v anglickém jazyce
Discriminative adaptation based on fast combination of DMAP and DfMLLR
Popis výsledku anglicky
This paper investigates the combination of discriminative adaptation techniques. The discriminative Maximum A-Posteriori (DMAP) adaptation and discriminative feature Maximum Likelihood Linear Regression (DfMLLR) are examined. Since each of the methods isproposed for distinct amount of adaptation data it is useful to combine them in order to preserve the systems performance in situations with varying amount of adaptation data. Generally, DfMLLR and DMAP are executed subsequently (DMAP preceded by DfMLLR) demanding to approach the data twice. Since both methods address the data through the same statistics an one-pass-combination was proposed in order to decrease the time consumption. The one-pass-combination utilizes the advantage of DfMLLR method to transform directly the feature vectors. However, instead of feature vectors the statistics are transformed, what allows to use already computed statistics for the DMAP pass without the need to process the data once again. All the approaches
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2010
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Interspeech 2010
ISBN
978-1-61782-123-3
ISSN
—
e-ISSN
—
Počet stran výsledku
4
Strana od-do
—
Název nakladatele
Curran Associates
Místo vydání
Red Hook
Místo konání akce
Makuhari, Chiba, Japonsko
Datum konání akce
1. 1. 2010
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—