Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Hermite interpolation with HE-splines

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F09%3A00501819" target="_blank" >RIV/49777513:23520/09:00501819 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Hermite interpolation with HE-splines

  • Popis výsledku v původním jazyce

    Hypo/epicycloids (shortly HE-cycloids) are well-known curves, in detail studied in classical geometry. Hence, one may wonder what new can be said about these traditional geometric objects. It has been proved recently, cf. [12], that all rational HE-cycloids are curves with rational offsets, i.e. they belong to the class of rational Pythagorean hodograph curves. In this paper, we present an algorithm for G1 Hermite interpolation with hypo/epicycloidal arcs which results from their support function representation.

  • Název v anglickém jazyce

    Hermite interpolation with HE-splines

  • Popis výsledku anglicky

    Hypo/epicycloids (shortly HE-cycloids) are well-known curves, in detail studied in classical geometry. Hence, one may wonder what new can be said about these traditional geometric objects. It has been proved recently, cf. [12], that all rational HE-cycloids are curves with rational offsets, i.e. they belong to the class of rational Pythagorean hodograph curves. In this paper, we present an algorithm for G1 Hermite interpolation with hypo/epicycloidal arcs which results from their support function representation.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2009

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 29th Conference on Geometry and Graphics

  • ISBN

    80-86195-61-9

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    8

  • Strana od-do

  • Název nakladatele

    Polyglot

  • Místo vydání

    Liberec

  • Místo konání akce

    Doubice

  • Datum konání akce

    10. 9. 2009

  • Typ akce podle státní příslušnosti

    CST - Celostátní akce

  • Kód UT WoS článku