Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Volumes with piecewise quadratic medial surface transforms: Computation of boundaries and trimmed offsets

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F10%3A00503240" target="_blank" >RIV/49777513:23520/10:00503240 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Volumes with piecewise quadratic medial surface transforms: Computation of boundaries and trimmed offsets

  • Popis výsledku v původním jazyce

    MOS surfaces (i.e., medial surface transforms obeying a sum of squares condition) are rational surfaces in R^{3,1} which possess rational envelopes of the associated two-parameter families of spheres. Moreover, all offsets of the envelopes admit rationalparameterizations as well. Recently, it has been proved that quadratic triangular Bézier patches in View the MathML source are MOS surfaces. Following this result, we describe an algorithm for computing an exact rational envelope of a two-parameter family of spheres given by a quadratic patch in View the MathML source. The paper focuses mainly on the geometric aspects of the algorithm. Since these patches are capable of producing C1 smooth approximations of medial surface transforms of spatial domains,we use this algorithm to generate rational approximations of envelopes of general medial surface transforms. One of the main advantages of this approach to offsetting is the fact that the trimming procedure becomes considerably simpler.

  • Název v anglickém jazyce

    Volumes with piecewise quadratic medial surface transforms: Computation of boundaries and trimmed offsets

  • Popis výsledku anglicky

    MOS surfaces (i.e., medial surface transforms obeying a sum of squares condition) are rational surfaces in R^{3,1} which possess rational envelopes of the associated two-parameter families of spheres. Moreover, all offsets of the envelopes admit rationalparameterizations as well. Recently, it has been proved that quadratic triangular Bézier patches in View the MathML source are MOS surfaces. Following this result, we describe an algorithm for computing an exact rational envelope of a two-parameter family of spheres given by a quadratic patch in View the MathML source. The paper focuses mainly on the geometric aspects of the algorithm. Since these patches are capable of producing C1 smooth approximations of medial surface transforms of spatial domains,we use this algorithm to generate rational approximations of envelopes of general medial surface transforms. One of the main advantages of this approach to offsetting is the fact that the trimming procedure becomes considerably simpler.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2010

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Computer-Aided Design

  • ISSN

    0010-4485

  • e-ISSN

  • Svazek periodika

    42

  • Číslo periodika v rámci svazku

    6

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    9

  • Strana od-do

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus