Volumes with piecewise quadratic medial surface transforms: Computation of boundaries and trimmed offsets
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F10%3A00503240" target="_blank" >RIV/49777513:23520/10:00503240 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Volumes with piecewise quadratic medial surface transforms: Computation of boundaries and trimmed offsets
Popis výsledku v původním jazyce
MOS surfaces (i.e., medial surface transforms obeying a sum of squares condition) are rational surfaces in R^{3,1} which possess rational envelopes of the associated two-parameter families of spheres. Moreover, all offsets of the envelopes admit rationalparameterizations as well. Recently, it has been proved that quadratic triangular Bézier patches in View the MathML source are MOS surfaces. Following this result, we describe an algorithm for computing an exact rational envelope of a two-parameter family of spheres given by a quadratic patch in View the MathML source. The paper focuses mainly on the geometric aspects of the algorithm. Since these patches are capable of producing C1 smooth approximations of medial surface transforms of spatial domains,we use this algorithm to generate rational approximations of envelopes of general medial surface transforms. One of the main advantages of this approach to offsetting is the fact that the trimming procedure becomes considerably simpler.
Název v anglickém jazyce
Volumes with piecewise quadratic medial surface transforms: Computation of boundaries and trimmed offsets
Popis výsledku anglicky
MOS surfaces (i.e., medial surface transforms obeying a sum of squares condition) are rational surfaces in R^{3,1} which possess rational envelopes of the associated two-parameter families of spheres. Moreover, all offsets of the envelopes admit rationalparameterizations as well. Recently, it has been proved that quadratic triangular Bézier patches in View the MathML source are MOS surfaces. Following this result, we describe an algorithm for computing an exact rational envelope of a two-parameter family of spheres given by a quadratic patch in View the MathML source. The paper focuses mainly on the geometric aspects of the algorithm. Since these patches are capable of producing C1 smooth approximations of medial surface transforms of spatial domains,we use this algorithm to generate rational approximations of envelopes of general medial surface transforms. One of the main advantages of this approach to offsetting is the fact that the trimming procedure becomes considerably simpler.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2010
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computer-Aided Design
ISSN
0010-4485
e-ISSN
—
Svazek periodika
42
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
9
Strana od-do
—
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—