Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Speaker adaptation of language and prosodic models for automatic dialog act segmentation of speech

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F10%3A00503453" target="_blank" >RIV/49777513:23520/10:00503453 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Speaker adaptation of language and prosodic models for automatic dialog act segmentation of speech

  • Popis výsledku v původním jazyce

    Speaker-dependent modeling has a long history in speech recognition, but has received less attention in speech understanding. This study explores speaker-specific modeling for the task of automatic segmentation of speech into dialog acts (DAs), using a linear combination of speaker-dependent and speaker-independent language and prosodic models. Data come from 20 frequent speakers in the ICSI meeting corpus; adaptation data per speaker ranges from 5 k to 115 k words. We compare performance for both reference transcripts and automatic speech recognition output. We find that: (1) speaker adaptation in this domain results both in a significant overall improvement and in improvements for many individual speakers, (2) the magnitude of improvement for individual speakers does not depend on the amount of adaptation data, and (3) language and prosodic models differ both in degree of improvement, and in relative benefit for specific DA classes. These results suggest important future directions f

  • Název v anglickém jazyce

    Speaker adaptation of language and prosodic models for automatic dialog act segmentation of speech

  • Popis výsledku anglicky

    Speaker-dependent modeling has a long history in speech recognition, but has received less attention in speech understanding. This study explores speaker-specific modeling for the task of automatic segmentation of speech into dialog acts (DAs), using a linear combination of speaker-dependent and speaker-independent language and prosodic models. Data come from 20 frequent speakers in the ICSI meeting corpus; adaptation data per speaker ranges from 5 k to 115 k words. We compare performance for both reference transcripts and automatic speech recognition output. We find that: (1) speaker adaptation in this domain results both in a significant overall improvement and in improvements for many individual speakers, (2) the magnitude of improvement for individual speakers does not depend on the amount of adaptation data, and (3) language and prosodic models differ both in degree of improvement, and in relative benefit for specific DA classes. These results suggest important future directions f

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    JC - Počítačový hardware a software

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/1M0567" target="_blank" >1M0567: Centrum aplikované kybernetiky</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2010

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Speech Communication

  • ISSN

    0167-6393

  • e-ISSN

  • Svazek periodika

    52

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    10

  • Strana od-do

  • Kód UT WoS článku

    000274888900005

  • EID výsledku v databázi Scopus