Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Czech HMM-Based Speech Synthesis

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F10%3A00503716" target="_blank" >RIV/49777513:23520/10:00503716 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Czech HMM-Based Speech Synthesis

  • Popis výsledku v původním jazyce

    In this paper, first experiments on statistical parametric HMM-based speech synthesis for the Czech language are described. In this synthesis method, trajectories of speech parameters are generated from the trained hidden Markov models. A final speech waveform is synthesized from those speech parameters. In our experiments, spectral properties were represented by mel cepstrum coefficients. For the waveform synthesis, the corresponding MLSA filter excited by pulses or noise was utilized. Beside that basic setup, a high-quality analysis/synthesis system STRAIGHT was employed for more sophisticated speech representation. For a more robust model parameter estimation, HMMs are clustered by using decision tree-based context clustering algorithm. For this purpose, phonetic and prosodic contextual factors proposed for the Czech language are taken into account. The created clustering trees are also employed for synthesis of speech units unseen within the training stage. The evaluation by subjec

  • Název v anglickém jazyce

    Czech HMM-Based Speech Synthesis

  • Popis výsledku anglicky

    In this paper, first experiments on statistical parametric HMM-based speech synthesis for the Czech language are described. In this synthesis method, trajectories of speech parameters are generated from the trained hidden Markov models. A final speech waveform is synthesized from those speech parameters. In our experiments, spectral properties were represented by mel cepstrum coefficients. For the waveform synthesis, the corresponding MLSA filter excited by pulses or noise was utilized. Beside that basic setup, a high-quality analysis/synthesis system STRAIGHT was employed for more sophisticated speech representation. For a more robust model parameter estimation, HMMs are clustered by using decision tree-based context clustering algorithm. For this purpose, phonetic and prosodic contextual factors proposed for the Czech language are taken into account. The created clustering trees are also employed for synthesis of speech units unseen within the training stage. The evaluation by subjec

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    JD - Využití počítačů, robotika a její aplikace

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2010

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Lecture Notes in Artificial Intelligence

  • ISSN

    0302-9743

  • e-ISSN

  • Svazek periodika

    2010

  • Číslo periodika v rámci svazku

    6231

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    8

  • Strana od-do

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus