Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Automatic Segmentation of Parasitic Sounds in Speech Corpora for TTS Synthesis

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F10%3A00504448" target="_blank" >RIV/49777513:23520/10:00504448 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Automatic Segmentation of Parasitic Sounds in Speech Corpora for TTS Synthesis

  • Popis výsledku v původním jazyce

    In this paper, automatic segmentation of parasitic speech sounds in speech corpora for text-to-speech (TTS) synthesis is presented. The automatic segmentation is, beside the automatic detection of the presence of such sounds in speech corpora, an important step in the precise localisation of parasitic sounds in speech corpora. The main goal of this study is to find out whether the segmentation of these sounds is accurate enough to enable cutting the sounds out of synthetic speech or explicit modelling of these sounds during synthesis. HMM-based classifier was employed to detect the parasitic sounds and to find the boundaries between these sounds and the surrounding phones simultaneously. The results show that the automatic segmentation of parasitic sounds is comparable to the segmentation of other phones, which indicates that the cutting out or the explicit usage of parasitic sounds should be possible.

  • Název v anglickém jazyce

    Automatic Segmentation of Parasitic Sounds in Speech Corpora for TTS Synthesis

  • Popis výsledku anglicky

    In this paper, automatic segmentation of parasitic speech sounds in speech corpora for text-to-speech (TTS) synthesis is presented. The automatic segmentation is, beside the automatic detection of the presence of such sounds in speech corpora, an important step in the precise localisation of parasitic sounds in speech corpora. The main goal of this study is to find out whether the segmentation of these sounds is accurate enough to enable cutting the sounds out of synthetic speech or explicit modelling of these sounds during synthesis. HMM-based classifier was employed to detect the parasitic sounds and to find the boundaries between these sounds and the surrounding phones simultaneously. The results show that the automatic segmentation of parasitic sounds is comparable to the segmentation of other phones, which indicates that the cutting out or the explicit usage of parasitic sounds should be possible.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    JD - Využití počítačů, robotika a její aplikace

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA102%2F09%2F0989" target="_blank" >GA102/09/0989: Nové perspektivní metody vysoce kvalitní syntézy mluvené češtiny</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2010

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Lecture Notes in Artificial Intelligence

  • ISSN

    0302-9743

  • e-ISSN

  • Svazek periodika

    2010

  • Číslo periodika v rámci svazku

    6231

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    8

  • Strana od-do

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus