Representation of planar integral-transformations by 4-D wavelet decomposition
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F11%3A43896589" target="_blank" >RIV/49777513:23520/11:43896589 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s00190-010-0440-0" target="_blank" >http://dx.doi.org/10.1007/s00190-010-0440-0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00190-010-0440-0" target="_blank" >10.1007/s00190-010-0440-0</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Representation of planar integral-transformations by 4-D wavelet decomposition
Popis výsledku v původním jazyce
Numerical methods for the evaluation of integral operators can often be related to the solution of the so-called Galerkin equations. For convolution operators and exponentials with purely imaginary exponents as base functions the Galerkin matrix becomesdiagonal and this fact is the core of the FFT techniques, used in Physical Geodesy. For non-convolution operators the FFT technique is not applicable. This paper aims at the development of a technique, which can also be applied for non-convolution operators. This technique is based on the use of wavelets as base functions. In this case the Galerkin matrix is not diagonal but (after thresholding) very sparse and this leads to methods, which are similarly efficient as FFT in the convolution case. The paper starts with the theoretical background for n-dimensional wavelet analysis and the representation of integral operators with respect to those wavelet bases. The resulting algorithm is tested for convolution and non-convolution operators.
Název v anglickém jazyce
Representation of planar integral-transformations by 4-D wavelet decomposition
Popis výsledku anglicky
Numerical methods for the evaluation of integral operators can often be related to the solution of the so-called Galerkin equations. For convolution operators and exponentials with purely imaginary exponents as base functions the Galerkin matrix becomesdiagonal and this fact is the core of the FFT techniques, used in Physical Geodesy. For non-convolution operators the FFT technique is not applicable. This paper aims at the development of a technique, which can also be applied for non-convolution operators. This technique is based on the use of wavelets as base functions. In this case the Galerkin matrix is not diagonal but (after thresholding) very sparse and this leads to methods, which are similarly efficient as FFT in the convolution case. The paper starts with the theoretical background for n-dimensional wavelet analysis and the representation of integral operators with respect to those wavelet bases. The resulting algorithm is tested for convolution and non-convolution operators.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
DE - Zemský magnetismus, geodesie, geografie
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
JOURNAL OF GEODESY
ISSN
0949-7714
e-ISSN
—
Svazek periodika
85
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
16
Strana od-do
341-356
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—