Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Processing and Categorization of Czech Written Documents Using Neural Networks

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F12%3A43914966" target="_blank" >RIV/49777513:23520/12:43914966 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Processing and Categorization of Czech Written Documents Using Neural Networks

  • Popis výsledku v původním jazyce

    The Kohonen Self-organizing Feature Map (SOM) has been developed for clustering input vectors and for projection of continuous high-dimensional signal to discrete low-dimensional space. The application area, where the map can be also used, is the processing of text documents. Within the project WEBSOM, some methods based on SOM have been developed. These methods are suitable either for text documents information retrieval or for organization of large document collections. All methods have been tested oncollections of English and Finnish written documents. This article deals with the application of WEBSOM methods to Czech written documents collections. The basic principles of WEBSOM methods, transformation of text information into the real components feature vector and results of documents classification are described. The Carpenter-Grossberg ART-2 neural network, usually used for adaptive vector clustering, was also tested as a document categorization tool. The results achieved by usi

  • Název v anglickém jazyce

    Processing and Categorization of Czech Written Documents Using Neural Networks

  • Popis výsledku anglicky

    The Kohonen Self-organizing Feature Map (SOM) has been developed for clustering input vectors and for projection of continuous high-dimensional signal to discrete low-dimensional space. The application area, where the map can be also used, is the processing of text documents. Within the project WEBSOM, some methods based on SOM have been developed. These methods are suitable either for text documents information retrieval or for organization of large document collections. All methods have been tested oncollections of English and Finnish written documents. This article deals with the application of WEBSOM methods to Czech written documents collections. The basic principles of WEBSOM methods, transformation of text information into the real components feature vector and results of documents classification are described. The Carpenter-Grossberg ART-2 neural network, usually used for adaptive vector clustering, was also tested as a document categorization tool. The results achieved by usi

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    JD - Využití počítačů, robotika a její aplikace

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/2C06009" target="_blank" >2C06009: Prostředky tvorby komplexní báze znalostí pro komunikaci se sémantickým webem v přirozeném jazyce</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2012

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Neural Network World

  • ISSN

    1210-0552

  • e-ISSN

  • Svazek periodika

    22

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    CZ - Česká republika

  • Počet stran výsledku

    14

  • Strana od-do

    53-66

  • Kód UT WoS článku

    000302202700005

  • EID výsledku v databázi Scopus