Curves and surfaces with rational chord length parameterization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F12%3A43914987" target="_blank" >RIV/49777513:23520/12:43914987 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.cagd.2011.04.003" target="_blank" >http://dx.doi.org/10.1016/j.cagd.2011.04.003</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cagd.2011.04.003" target="_blank" >10.1016/j.cagd.2011.04.003</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Curves and surfaces with rational chord length parameterization
Popis výsledku v původním jazyce
The investigation of rational varieties with chord length parameterization (shortly RCL varieties) was started by Farin (2006) who observed that rational quadratic circles in standard Bézier form are parametrized by chord length. Motivated by this observation, general RCL curves were studied. Later, the RCL property was extended to rational triangular Bézier surfaces of an arbitrary degree for which the distinguishing property is that the ratios of the three distances of a point to the three vertices ofan arbitrary triangle inscribed to the reference circle and the ratios of the distances of the parameter point to the three vertices of the corresponding domain triangle are identical. In this paper, after discussing rational tensor-product surfaces with the RCL property, we present a general unifying approach and study the conditions under which a k-dimensional rational variety in d-dimensional Euclidean space possesses the RCL property. We analyze the entire family of RCL varieties, p
Název v anglickém jazyce
Curves and surfaces with rational chord length parameterization
Popis výsledku anglicky
The investigation of rational varieties with chord length parameterization (shortly RCL varieties) was started by Farin (2006) who observed that rational quadratic circles in standard Bézier form are parametrized by chord length. Motivated by this observation, general RCL curves were studied. Later, the RCL property was extended to rational triangular Bézier surfaces of an arbitrary degree for which the distinguishing property is that the ratios of the three distances of a point to the three vertices ofan arbitrary triangle inscribed to the reference circle and the ratios of the distances of the parameter point to the three vertices of the corresponding domain triangle are identical. In this paper, after discussing rational tensor-product surfaces with the RCL property, we present a general unifying approach and study the conditions under which a k-dimensional rational variety in d-dimensional Euclidean space possesses the RCL property. We analyze the entire family of RCL varieties, p
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
COMPUTER AIDED GEOMETRIC DESIGN
ISSN
0167-8396
e-ISSN
—
Svazek periodika
29
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
11
Strana od-do
231-241
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—