Exploring hypersurfaces with offset-like convolutions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F12%3A43915714" target="_blank" >RIV/49777513:23520/12:43915714 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.cagd.2012.07.002" target="_blank" >http://dx.doi.org/10.1016/j.cagd.2012.07.002</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cagd.2012.07.002" target="_blank" >10.1016/j.cagd.2012.07.002</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Exploring hypersurfaces with offset-like convolutions
Popis výsledku v původním jazyce
Offsetting is one of the fundamental operations in Computer Aided Design. Due to their high applicability, studying offsets of hypersurfaces has become a popular research area and many interesting problems related to this topic have arisen. In addition,various generalizations of classical offsets have been introduced and then investigated. In this paper we study a generalization which is based on considering offsets to (not only parameterized) hypersurfaces as convolutions with hyperspheres. In other words, we study hypersurfaces sharing the same convolution properties with hyperspheres and thus yielding offset-like convolutions. We will present an algebraic analysis of these hypersurfaces and study their properties suitable for subsequent applications, e.g. in geometric modelling. Moreover, our approach allows to derive distinguished properties of the well-known PH/PN parameterizations as special subcases of the introduced QN parameterizations.
Název v anglickém jazyce
Exploring hypersurfaces with offset-like convolutions
Popis výsledku anglicky
Offsetting is one of the fundamental operations in Computer Aided Design. Due to their high applicability, studying offsets of hypersurfaces has become a popular research area and many interesting problems related to this topic have arisen. In addition,various generalizations of classical offsets have been introduced and then investigated. In this paper we study a generalization which is based on considering offsets to (not only parameterized) hypersurfaces as convolutions with hyperspheres. In other words, we study hypersurfaces sharing the same convolution properties with hyperspheres and thus yielding offset-like convolutions. We will present an algebraic analysis of these hypersurfaces and study their properties suitable for subsequent applications, e.g. in geometric modelling. Moreover, our approach allows to derive distinguished properties of the well-known PH/PN parameterizations as special subcases of the introduced QN parameterizations.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/ED1.1.00%2F02.0090" target="_blank" >ED1.1.00/02.0090: NTIS - Nové technologie pro informační společnost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
COMPUTER AIDED GEOMETRIC DESIGN
ISSN
0167-8396
e-ISSN
—
Svazek periodika
29
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
15
Strana od-do
676-690
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—