Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Robust Adaptation Techniques Dealing with Small Amount of Data

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F12%3A43915990" target="_blank" >RIV/49777513:23520/12:43915990 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://download.springer.com/static/pdf/237/chp%253A10.1007%252F978-3-642-32790-2_58.pdf?auth66=1352100308_6ca3feab5ab1f038650cd3b971c1f53b&ext=.pdf" target="_blank" >http://download.springer.com/static/pdf/237/chp%253A10.1007%252F978-3-642-32790-2_58.pdf?auth66=1352100308_6ca3feab5ab1f038650cd3b971c1f53b&ext=.pdf</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Robust Adaptation Techniques Dealing with Small Amount of Data

  • Popis výsledku v původním jazyce

    The worst problem the adaptation is dealing with is the lack of adaptation data. This work focuses on the feature Maximum Likelihood Linear Regression (fMLLR) adaptation where the number of free parameters to be estimated significantly decreases in comparison with other adaptation methods. However, the number of free parameters of fMLLR transform is still too high to be estimated properly when dealing with extremely small data sets. We described and compared various methods used to avoid this problem, namely the initialization of the fMLLR transform and a linear combination of basis matrices varying in the choice of the basis estimation (eigen decomposition, factor analysis, independent component analysis and maximum likelihood estimation). Initialization methods compensate the absence of the test speaker's data utilizing other suitable data. Methods using linear combination of basis matrices reduce the number of estimated fMLLR parameters to a smaller number of weights to be estimated

  • Název v anglickém jazyce

    Robust Adaptation Techniques Dealing with Small Amount of Data

  • Popis výsledku anglicky

    The worst problem the adaptation is dealing with is the lack of adaptation data. This work focuses on the feature Maximum Likelihood Linear Regression (fMLLR) adaptation where the number of free parameters to be estimated significantly decreases in comparison with other adaptation methods. However, the number of free parameters of fMLLR transform is still too high to be estimated properly when dealing with extremely small data sets. We described and compared various methods used to avoid this problem, namely the initialization of the fMLLR transform and a linear combination of basis matrices varying in the choice of the basis estimation (eigen decomposition, factor analysis, independent component analysis and maximum likelihood estimation). Initialization methods compensate the absence of the test speaker's data utilizing other suitable data. Methods using linear combination of basis matrices reduce the number of estimated fMLLR parameters to a smaller number of weights to be estimated

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    JD - Využití počítačů, robotika a její aplikace

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/DF12P01OVV022" target="_blank" >DF12P01OVV022: Zpřístupnění rozsáhlého video archivu kulturního dědictví pomocí metod automatického rozpoznávání mluvené řeči a strojového překladu. (AMALACH)</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2012

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Lecture Notes in Computer Science

  • ISSN

    0302-9743

  • e-ISSN

  • Svazek periodika

    7499

  • Číslo periodika v rámci svazku

    neuveden

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    8

  • Strana od-do

    480-487

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus