Planar C^1 Hermite interpolation with uniform and non-uniform TC-biarcs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F13%3A43916872" target="_blank" >RIV/49777513:23520/13:43916872 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.cagd.2012.07.003" target="_blank" >http://dx.doi.org/10.1016/j.cagd.2012.07.003</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cagd.2012.07.003" target="_blank" >10.1016/j.cagd.2012.07.003</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Planar C^1 Hermite interpolation with uniform and non-uniform TC-biarcs
Popis výsledku v původním jazyce
Pythagorean hodograph curves (shortly PH curves), introduced in Farouki and Sakkalis (1990), form an important subclass of polynomial parametric curves and currently represent standard objects in geometric modelling. In this paper, we focus on Tschirnhausen cubic as the only one Pythagorean hodograph cubic and we study planar C^1 Hermite interpolation with two arcs of Tschirnhausen cubic joined with C^1 continuity (the so-called TC-biarc). We extend results presented in Farouki and Peters (1996) in several ways. We study an asymptotical behaviour of the conversion of an arbitrary planar curve with well defined tangent vectors everywhere to a C^1 PH cubic spline curve and we prove that the approximation order is 3. Further, we analyze the shape of TC-biarcs and provide a sufficient condition for input data guaranteeing TC-biarc without local and pairwise self-intersections. Finally, we generalize the basic uniform method to the non-uniform case, which introduces a free shape parameter,
Název v anglickém jazyce
Planar C^1 Hermite interpolation with uniform and non-uniform TC-biarcs
Popis výsledku anglicky
Pythagorean hodograph curves (shortly PH curves), introduced in Farouki and Sakkalis (1990), form an important subclass of polynomial parametric curves and currently represent standard objects in geometric modelling. In this paper, we focus on Tschirnhausen cubic as the only one Pythagorean hodograph cubic and we study planar C^1 Hermite interpolation with two arcs of Tschirnhausen cubic joined with C^1 continuity (the so-called TC-biarc). We extend results presented in Farouki and Peters (1996) in several ways. We study an asymptotical behaviour of the conversion of an arbitrary planar curve with well defined tangent vectors everywhere to a C^1 PH cubic spline curve and we prove that the approximation order is 3. Further, we analyze the shape of TC-biarcs and provide a sufficient condition for input data guaranteeing TC-biarc without local and pairwise self-intersections. Finally, we generalize the basic uniform method to the non-uniform case, which introduces a free shape parameter,
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
COMPUTER AIDED GEOMETRIC DESIGN
ISSN
0167-8396
e-ISSN
—
Svazek periodika
30
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
20
Strana od-do
58-77
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—