Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

SVM-Based Detection of Misannotated Words in Read Speech Corpora

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F13%3A43919403" target="_blank" >RIV/49777513:23520/13:43919403 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://link.springer.com/chapter/10.1007%2F978-3-642-40585-3_58" target="_blank" >http://link.springer.com/chapter/10.1007%2F978-3-642-40585-3_58</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-642-40585-3_58" target="_blank" >10.1007/978-3-642-40585-3_58</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    SVM-Based Detection of Misannotated Words in Read Speech Corpora

  • Popis výsledku v původním jazyce

    Automatic detection of misannotated words in single-speaker read-speech corpora is investigated in this paper. Support vector machine (SVM) classifier was proposed to detect the misannotated words. Its performance was evaluated with respect to various word-level feature sets. The SVM classifier was shown to perform very well with both high precision and recall scores and with F1 measure being almost 88%. This is a statistically significant improvement over a traditionally used outlier-based detection method.

  • Název v anglickém jazyce

    SVM-Based Detection of Misannotated Words in Read Speech Corpora

  • Popis výsledku anglicky

    Automatic detection of misannotated words in single-speaker read-speech corpora is investigated in this paper. Support vector machine (SVM) classifier was proposed to detect the misannotated words. Its performance was evaluated with respect to various word-level feature sets. The SVM classifier was shown to perform very well with both high precision and recall scores and with F1 measure being almost 88%. This is a statistically significant improvement over a traditionally used outlier-based detection method.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    JD - Využití počítačů, robotika a její aplikace

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/TA01030476" target="_blank" >TA01030476: Inteligentní technologie pro zvýšení bezpečnosti letového provozu</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2013

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Text, Speech, and Dialogue 16th International Conference, TSD 2013, Pilsen, Czech Republic, September 1-5, 2013. Proceedings

  • ISBN

    978-3-642-40584-6

  • ISSN

    0302-9743

  • e-ISSN

  • Počet stran výsledku

    8

  • Strana od-do

    457-464

  • Název nakladatele

    Springer

  • Místo vydání

    Heidelberg

  • Místo konání akce

    Plzeň

  • Datum konání akce

    1. 9. 2013

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku