Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Maximum and minimum principles for nonlinear transport equations on discrete-space domains

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F14%3A43921947" target="_blank" >RIV/49777513:23520/14:43921947 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://ejde.math.txstate.edu/Volumes/2014/78/volek.pdf" target="_blank" >http://ejde.math.txstate.edu/Volumes/2014/78/volek.pdf</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Maximum and minimum principles for nonlinear transport equations on discrete-space domains

  • Popis výsledku v původním jazyce

    We consider nonlinear scalar transport equations on the domain with discrete space and continuous time. As a motivation we derive a conservation law on these domains. In the main part of the paper we prove maximum and minimum principles that are later applied to obtain an a priori bound which is applied in the proof of existence of solution and its uniqueness. Further, we study several consequences of these principles such as boundedness of solutions, sign preservation, uniform stability and comparisontheorem which deals with lower and upper solutions.

  • Název v anglickém jazyce

    Maximum and minimum principles for nonlinear transport equations on discrete-space domains

  • Popis výsledku anglicky

    We consider nonlinear scalar transport equations on the domain with discrete space and continuous time. As a motivation we derive a conservation law on these domains. In the main part of the paper we prove maximum and minimum principles that are later applied to obtain an a priori bound which is applied in the proof of existence of solution and its uniqueness. Further, we study several consequences of these principles such as boundedness of solutions, sign preservation, uniform stability and comparisontheorem which deals with lower and upper solutions.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2014

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Electronic Journal of Differential Equations

  • ISSN

    1072-6691

  • e-ISSN

  • Svazek periodika

    2014

  • Číslo periodika v rámci svazku

    78

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    13

  • Strana od-do

    1-13

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus