Analytical periodic solution and stability assessment of 1 DOF parametric systems with time varying stiffness
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F14%3A43922712" target="_blank" >RIV/49777513:23520/14:43922712 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.amc.2014.05.089" target="_blank" >http://dx.doi.org/10.1016/j.amc.2014.05.089</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.amc.2014.05.089" target="_blank" >10.1016/j.amc.2014.05.089</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Analytical periodic solution and stability assessment of 1 DOF parametric systems with time varying stiffness
Popis výsledku v původním jazyce
The presented paper deals with an approach to analytical periodic solution and to stability assessment of one-degree-of-freedom linear vibrating systems. It is supposed that these systems are excited by the time periodic force and contain time periodic stiffness. The periodic Green's function determined as a response to a Dirac chain of unit impulses repeating with period of excitation is used to transform the equation of motion into the Fredholm integral equation with degenerated kernel. If the Dirac chain is expressed as a Fourier series and a limited number of terms is taken into account, the solution of the integral equation can also be obtained in a series form. It has been found that the real eigenvalues of the system matrix determine the critical values of the fluctuation stiffness parameter. The values of this real parameter correspond to the borders of (in)stability in the plane given by the variation of the angle frequency and of the fluctuation stiffness parameter. Moreover,
Název v anglickém jazyce
Analytical periodic solution and stability assessment of 1 DOF parametric systems with time varying stiffness
Popis výsledku anglicky
The presented paper deals with an approach to analytical periodic solution and to stability assessment of one-degree-of-freedom linear vibrating systems. It is supposed that these systems are excited by the time periodic force and contain time periodic stiffness. The periodic Green's function determined as a response to a Dirac chain of unit impulses repeating with period of excitation is used to transform the equation of motion into the Fredholm integral equation with degenerated kernel. If the Dirac chain is expressed as a Fourier series and a limited number of terms is taken into account, the solution of the integral equation can also be obtained in a series form. It has been found that the real eigenvalues of the system matrix determine the critical values of the fluctuation stiffness parameter. The values of this real parameter correspond to the borders of (in)stability in the plane given by the variation of the angle frequency and of the fluctuation stiffness parameter. Moreover,
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BI - Akustika a kmity
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/ED1.1.00%2F02.0090" target="_blank" >ED1.1.00/02.0090: NTIS - Nové technologie pro informační společnost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Mathematics and Computation
ISSN
0096-3003
e-ISSN
—
Svazek periodika
243
Číslo periodika v rámci svazku
September 2014
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
14
Strana od-do
138-151
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—