Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Existence of analytical solution, stability assessment and periodic response of vibrating systems with time varying parameters

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F20%3A43960172" target="_blank" >RIV/49777513:23520/20:43960172 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.kme.zcu.cz/acm/acm/article/view/532/536" target="_blank" >https://www.kme.zcu.cz/acm/acm/article/view/532/536</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.24132/acm.2020.532" target="_blank" >10.24132/acm.2020.532</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Existence of analytical solution, stability assessment and periodic response of vibrating systems with time varying parameters

  • Popis výsledku v původním jazyce

    The paper is focused on the solution of a vibrating system with one-degree-of-freedom with the objective to deal with the method for periodical response calculation (if exists) reminding Harmonic Balance Method of linear systems having time dependent parameters of mass, damping and stiffness under arbitrary periodical excitation. As a starting point of the investigation, a periodic Green’s function (PGF) construction of the stationary part of the original differential equation is used. The PGF then enables a transformation of the differential equation to the integro-differential one whose analytical solution is given in this paper. Such solution exists only in the case that the investigated system is stable and can be expressed in exact form. The second goal of the paper is to assess the stability and solution existence. For this purpose, a methodology of (in)stable parametric domain border determination is developed.

  • Název v anglickém jazyce

    Existence of analytical solution, stability assessment and periodic response of vibrating systems with time varying parameters

  • Popis výsledku anglicky

    The paper is focused on the solution of a vibrating system with one-degree-of-freedom with the objective to deal with the method for periodical response calculation (if exists) reminding Harmonic Balance Method of linear systems having time dependent parameters of mass, damping and stiffness under arbitrary periodical excitation. As a starting point of the investigation, a periodic Green’s function (PGF) construction of the stationary part of the original differential equation is used. The PGF then enables a transformation of the differential equation to the integro-differential one whose analytical solution is given in this paper. Such solution exists only in the case that the investigated system is stable and can be expressed in exact form. The second goal of the paper is to assess the stability and solution existence. For this purpose, a methodology of (in)stable parametric domain border determination is developed.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    20302 - Applied mechanics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LO1506" target="_blank" >LO1506: Podpora udržitelnosti centra NTIS - Nové technologie pro informační společnost</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Applied and Computational Mechanics

  • ISSN

    1802-680X

  • e-ISSN

  • Svazek periodika

    14

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    CZ - Česká republika

  • Počet stran výsledku

    22

  • Strana od-do

    123-144

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85100758423