Surfaces with Pythagorean normals along rational curves
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F14%3A43922791" target="_blank" >RIV/49777513:23520/14:43922791 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.sciencedirect.com/science/article/pii/S0167839614000570" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0167839614000570</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cagd.2014.05.008" target="_blank" >10.1016/j.cagd.2014.05.008</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Surfaces with Pythagorean normals along rational curves
Popis výsledku v původním jazyce
A rational curve on a rational surface such that the unit normal vector field of the surface along this curve is rational will be called a curve providing Pythagorean surface normals (or shortly a PSN curve). These curves represent rational paths on thesurface along which the surface possesses rational offset curves. Our aim is to study rational surfaces containing enough PSN curves. The relation with PN surfaces will be also investigated and thoroughly discussed. The algebraic and geometric propertiesof PSN curves will be described using the theory of double planes. The main motivation for this contribution is to bring the theory of rational offsets of rational surfaces closer to the practical problems appearing in numerical-control machining wherethe milling cutter does not follow continuously the whole offset surface but only certain chosen trajectories on it. A special attention will be devoted to rational surfaces with pencils of PSN curves.
Název v anglickém jazyce
Surfaces with Pythagorean normals along rational curves
Popis výsledku anglicky
A rational curve on a rational surface such that the unit normal vector field of the surface along this curve is rational will be called a curve providing Pythagorean surface normals (or shortly a PSN curve). These curves represent rational paths on thesurface along which the surface possesses rational offset curves. Our aim is to study rational surfaces containing enough PSN curves. The relation with PN surfaces will be also investigated and thoroughly discussed. The algebraic and geometric propertiesof PSN curves will be described using the theory of double planes. The main motivation for this contribution is to bring the theory of rational offsets of rational surfaces closer to the practical problems appearing in numerical-control machining wherethe milling cutter does not follow continuously the whole offset surface but only certain chosen trajectories on it. A special attention will be devoted to rational surfaces with pencils of PSN curves.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/ED1.1.00%2F02.0090" target="_blank" >ED1.1.00/02.0090: NTIS - Nové technologie pro informační společnost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
COMPUTER AIDED GEOMETRIC DESIGN
ISSN
0167-8396
e-ISSN
—
Svazek periodika
31
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
12
Strana od-do
451-463
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—