On one particular example of PSN pencils
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F14%3A43923912" target="_blank" >RIV/49777513:23520/14:43923912 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On one particular example of PSN pencils
Popis výsledku v původním jazyce
When the rational-offset (or Pythagorean-normal, shortly PN) proper-ty~is not satisfied globally but only along some special curves we speak about curves providing Pythagorean surface normals (shortly PSN curves). The PSN curves can occur also on non-PNsurfaces, and conversely on PN surfaces one can find curves which are non-PSN. A special role is played by rational surfaces possessing pencils of PSN curves. As special cases the ruled surfaces and ringed surfaces (both very imported classes of surfaces applicable in technical practise) can be studied from this point of view. In this short contribution, we show how the theory of PSN pencils can be used also for answering questions which were not answered before.
Název v anglickém jazyce
On one particular example of PSN pencils
Popis výsledku anglicky
When the rational-offset (or Pythagorean-normal, shortly PN) proper-ty~is not satisfied globally but only along some special curves we speak about curves providing Pythagorean surface normals (shortly PSN curves). The PSN curves can occur also on non-PNsurfaces, and conversely on PN surfaces one can find curves which are non-PSN. A special role is played by rational surfaces possessing pencils of PSN curves. As special cases the ruled surfaces and ringed surfaces (both very imported classes of surfaces applicable in technical practise) can be studied from this point of view. In this short contribution, we show how the theory of PSN pencils can be used also for answering questions which were not answered before.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/ED1.1.00%2F02.0090" target="_blank" >ED1.1.00/02.0090: NTIS - Nové technologie pro informační společnost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů