On modeling with rational ringed surfaces
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F15%3A43922792" target="_blank" >RIV/49777513:23520/15:43922792 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.sciencedirect.com/science/article/pii/S0010448514001870" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0010448514001870</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cad.2014.08.018" target="_blank" >10.1016/j.cad.2014.08.018</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On modeling with rational ringed surfaces
Popis výsledku v původním jazyce
A surface in Euclidean space is called ringed (or cyclic) if there exists a one-parameter family of planes that intersects this surface in circles. Well-known examples of ringed surfaces are the surfaces of revolution, (not only rotational) quadrics, canal surfaces, or Darboux cyclides. This paper focuses on modeling with rational ringed surfaces, mainly for blending purposes. We will deal with the question of rationality of ringed surfaces and discuss the usefulness of the so called P-curves for constructing rational ringed-surface-blends. The method of constructing blending surfaces that satisfy certain prescribed constraints, e.g. a necessity to avoid some obstacles, will be presented. The designed approach can be easily modified also for computingnn-way blends. In addition, we will study the contour curves on ringed surfaces and use them for computing approximate parameterizations of implicitly given blends by ringed surfaces. The designed techniques and their implementations are
Název v anglickém jazyce
On modeling with rational ringed surfaces
Popis výsledku anglicky
A surface in Euclidean space is called ringed (or cyclic) if there exists a one-parameter family of planes that intersects this surface in circles. Well-known examples of ringed surfaces are the surfaces of revolution, (not only rotational) quadrics, canal surfaces, or Darboux cyclides. This paper focuses on modeling with rational ringed surfaces, mainly for blending purposes. We will deal with the question of rationality of ringed surfaces and discuss the usefulness of the so called P-curves for constructing rational ringed-surface-blends. The method of constructing blending surfaces that satisfy certain prescribed constraints, e.g. a necessity to avoid some obstacles, will be presented. The designed approach can be easily modified also for computingnn-way blends. In addition, we will study the contour curves on ringed surfaces and use them for computing approximate parameterizations of implicitly given blends by ringed surfaces. The designed techniques and their implementations are
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/ED1.1.00%2F02.0090" target="_blank" >ED1.1.00/02.0090: NTIS - Nové technologie pro informační společnost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
COMPUTER-AIDED DESIGN
ISSN
0010-4485
e-ISSN
—
Svazek periodika
58
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
11
Strana od-do
151-161
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—