Determining surfaces of revolution from their implicit equations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F15%3A43925446" target="_blank" >RIV/49777513:23520/15:43925446 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.cam.2015.05.006" target="_blank" >http://dx.doi.org/10.1016/j.cam.2015.05.006</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cam.2015.05.006" target="_blank" >10.1016/j.cam.2015.05.006</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Determining surfaces of revolution from their implicit equations
Popis výsledku v původním jazyce
Results of number of geometric operations are in many cases surfaces described implicitly. Then it is a challenging task to recognize the type of the obtained surface, find its characteristics and for the rational surfaces compute also their parameterizations. In this contribution we will focus on surfaces of revolution. These objects, widely used in geometric modelling, are generated by rotating a generatrix around a given axis. If the generatrix is an algebraic curve then so is also the resulting surface, described uniquely by a polynomial which can be found by some well-established implicitation technique. However, starting from a polynomial it is not known how to decide if the corresponding algebraic surface is rotational or not. Motivated by this,our goal is to formulate a simple and efficient algorithm whose input is a polynomial with the coefficients from some subfield of RR and the output is the answer whether the shape is a surface of revolution. In the affirmative case we al
Název v anglickém jazyce
Determining surfaces of revolution from their implicit equations
Popis výsledku anglicky
Results of number of geometric operations are in many cases surfaces described implicitly. Then it is a challenging task to recognize the type of the obtained surface, find its characteristics and for the rational surfaces compute also their parameterizations. In this contribution we will focus on surfaces of revolution. These objects, widely used in geometric modelling, are generated by rotating a generatrix around a given axis. If the generatrix is an algebraic curve then so is also the resulting surface, described uniquely by a polynomial which can be found by some well-established implicitation technique. However, starting from a polynomial it is not known how to decide if the corresponding algebraic surface is rotational or not. Motivated by this,our goal is to formulate a simple and efficient algorithm whose input is a polynomial with the coefficients from some subfield of RR and the output is the answer whether the shape is a surface of revolution. In the affirmative case we al
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS
ISSN
0377-0427
e-ISSN
—
Svazek periodika
290
Číslo periodika v rámci svazku
December
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
11
Strana od-do
125-135
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—