Bayesian Quadrature in Nonlinear Filtering
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F15%3A43925657" target="_blank" >RIV/49777513:23520/15:43925657 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.scitepress.org/portal/PublicationsDetail.aspx?ID=oZ3U7lm9GNY%3d&t=1" target="_blank" >http://www.scitepress.org/portal/PublicationsDetail.aspx?ID=oZ3U7lm9GNY%3d&t=1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5220/0005534003800387" target="_blank" >10.5220/0005534003800387</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Bayesian Quadrature in Nonlinear Filtering
Popis výsledku v původním jazyce
The paper deals with the state estimation of nonlinear stochastic discrete-time systems by means of quadrature- based filtering algorithms. The algorithms use quadrature to approximate the moments given by integrals. The aim is at evaluation of the integral by Bayesian quadrature. The Bayesian quadrature perceives the integral itself as a random variable, on which inference is to be performed by conditioning on the function evaluations. Advantage of this approach is that in addition to the value of the integral, the variance of the integral is also obtained. In this paper, we improve estimation of covariances in quadrature-based filtering algorithms by taking into account the integral variance. The proposed modifications are applied to the Gauss-Hermite Kalman filter and the unscented Kalman filter algorithms. Finally, the performance of the modified filters is compared with the unmodified versions in numerical simulations. The modified versions of the filters exhibit significantly improved estimate credibility and a comparable root-mean-square error.
Název v anglickém jazyce
Bayesian Quadrature in Nonlinear Filtering
Popis výsledku anglicky
The paper deals with the state estimation of nonlinear stochastic discrete-time systems by means of quadrature- based filtering algorithms. The algorithms use quadrature to approximate the moments given by integrals. The aim is at evaluation of the integral by Bayesian quadrature. The Bayesian quadrature perceives the integral itself as a random variable, on which inference is to be performed by conditioning on the function evaluations. Advantage of this approach is that in addition to the value of the integral, the variance of the integral is also obtained. In this paper, we improve estimation of covariances in quadrature-based filtering algorithms by taking into account the integral variance. The proposed modifications are applied to the Gauss-Hermite Kalman filter and the unscented Kalman filter algorithms. Finally, the performance of the modified filters is compared with the unmodified versions in numerical simulations. The modified versions of the filters exhibit significantly improved estimate credibility and a comparable root-mean-square error.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
<a href="/cs/project/GC13-07058J" target="_blank" >GC13-07058J: Konzervativní fúze v systémech odhadu propojených v síti</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics (ICINCO)
ISBN
978-989-758-122-9
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
380-387
Název nakladatele
SCITEPRESS
Místo vydání
Colmar
Místo konání akce
Colmar, Francie
Datum konání akce
21. 7. 2015
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000381618600052