Contrastive Summarization: Comparing Opinions of Czech Senators
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F15%3A43925836" target="_blank" >RIV/49777513:23520/15:43925836 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Contrastive Summarization: Comparing Opinions of Czech Senators
Popis výsledku v původním jazyce
In this paper, we present a novel approach to contrastive summarization, i.e. a specific type of summarization, which aims to compare two documents (or groups of documents) on semantic and also sentiment level. The final output of contrastive summarization is a pair of summaries, depicting what topics are most often discussed with the largest difference in opinions of the authors. We explore the possibilities of combining the latent semantic information with the information about the opinions of the authors. First, we describe related works, which show, that this problem can be approached from many different directions. Next, we present our own algorithm, based on Latent Semantic Analysis, which computes scores for excerpts of the original text and based on these, it chooses best excerpts that should be included into the final summaries. Finally, we present the evaluation of our algorithm, using speeches from Czech senate.
Název v anglickém jazyce
Contrastive Summarization: Comparing Opinions of Czech Senators
Popis výsledku anglicky
In this paper, we present a novel approach to contrastive summarization, i.e. a specific type of summarization, which aims to compare two documents (or groups of documents) on semantic and also sentiment level. The final output of contrastive summarization is a pair of summaries, depicting what topics are most often discussed with the largest difference in opinions of the authors. We explore the possibilities of combining the latent semantic information with the information about the opinions of the authors. First, we describe related works, which show, that this problem can be approached from many different directions. Next, we present our own algorithm, based on Latent Semantic Analysis, which computes scores for excerpts of the original text and based on these, it chooses best excerpts that should be included into the final summaries. Finally, we present the evaluation of our algorithm, using speeches from Czech senate.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Theoretical and Applied Information Technology
ISSN
1992-8645
e-ISSN
—
Svazek periodika
77
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
PK - Pákistánská islámská republika
Počet stran výsledku
7
Strana od-do
62-68
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—