Guaranteed upper-lower bounds on homogenized properties by FFT-based Galerkin method
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F15%3A43926412" target="_blank" >RIV/49777513:23520/15:43926412 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21110/15:00233279 RIV/61989100:27740/15:86095971
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.cma.2015.09.003" target="_blank" >http://dx.doi.org/10.1016/j.cma.2015.09.003</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cma.2015.09.003" target="_blank" >10.1016/j.cma.2015.09.003</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Guaranteed upper-lower bounds on homogenized properties by FFT-based Galerkin method
Popis výsledku v původním jazyce
Guaranteed upper-lower bounds on homogenized coefficients, arising from the periodic cell problem, are calculated in a scalar elliptic setting. Our approach builds on the recent variational reformulation of the Moulinec-Suquet (1994) Fast Fourier Transform (FFT) homogenization scheme by Vondřejc et al. (2014), which is based on the conforming Galerkin approximation with trigonometric polynomials. Upper-lower bounds are obtained by adjusting the primal-dual finite element framework developed independently by Dvořák (1993) and Wi?ckowski (1995) to the FFT-based Galerkin setting. We show that the discretization procedure differs for odd and non-odd number of grid points. Thanks to the Helmholtz decomposition inherited from the continuous formulation, the duality structure is fully preserved for the odd discretizations. In the latter case, a more complex primal-dual structure is observed due to presence of the trigonometric polynomials associated with the Nyquist frequencies. These theoretical findings are confirmed with numerical examples. To conclude, the main advantage of the FFT-based approach over conventional finite-element schemes is that the primal and the dual problems are treated on the same basis, and this property can be extended beyond the scalar elliptic setting.
Název v anglickém jazyce
Guaranteed upper-lower bounds on homogenized properties by FFT-based Galerkin method
Popis výsledku anglicky
Guaranteed upper-lower bounds on homogenized coefficients, arising from the periodic cell problem, are calculated in a scalar elliptic setting. Our approach builds on the recent variational reformulation of the Moulinec-Suquet (1994) Fast Fourier Transform (FFT) homogenization scheme by Vondřejc et al. (2014), which is based on the conforming Galerkin approximation with trigonometric polynomials. Upper-lower bounds are obtained by adjusting the primal-dual finite element framework developed independently by Dvořák (1993) and Wi?ckowski (1995) to the FFT-based Galerkin setting. We show that the discretization procedure differs for odd and non-odd number of grid points. Thanks to the Helmholtz decomposition inherited from the continuous formulation, the duality structure is fully preserved for the odd discretizations. In the latter case, a more complex primal-dual structure is observed due to presence of the trigonometric polynomials associated with the Nyquist frequencies. These theoretical findings are confirmed with numerical examples. To conclude, the main advantage of the FFT-based approach over conventional finite-element schemes is that the primal and the dual problems are treated on the same basis, and this property can be extended beyond the scalar elliptic setting.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computer Methods in Applied Mechanics and Engineering
ISSN
0045-7825
e-ISSN
—
Svazek periodika
297
Číslo periodika v rámci svazku
December 01
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
34
Strana od-do
258-291
Kód UT WoS článku
000364061800012
EID výsledku v databázi Scopus
—