Detecting artifacts in synthetic speech
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F15%3A43926635" target="_blank" >RIV/49777513:23520/15:43926635 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Detecting artifacts in synthetic speech
Popis výsledku v původním jazyce
Nowadays, speech synthesis is growing very popular in everyday use. For example, automatic voice assistants on mobile platforms are getting smarter every year, using speech synthesis and speech recognition to communicate with the user in a more natural way. As more people make use of speech synthesis, the quality requirements are higher more than ever. Although scientists currently focus mainly on HMM-based synthesis, real applications still use the traditional unit-selection method. Unit selection is known for its ability to produce high-quality synthetic speech. It produces more natural speech, but it may suffer from sudden quality drops at concatenation points. Quality drops ("artifacts") can theoretically occur at every concatenation point. In thefollowing paragraphs, an experiment on the automatic detection of artifacts in concatenation speech synthesis is presented. The main goal was to build a classifier which would mark suspicious segments in synthetic speech in the same way a
Název v anglickém jazyce
Detecting artifacts in synthetic speech
Popis výsledku anglicky
Nowadays, speech synthesis is growing very popular in everyday use. For example, automatic voice assistants on mobile platforms are getting smarter every year, using speech synthesis and speech recognition to communicate with the user in a more natural way. As more people make use of speech synthesis, the quality requirements are higher more than ever. Although scientists currently focus mainly on HMM-based synthesis, real applications still use the traditional unit-selection method. Unit selection is known for its ability to produce high-quality synthetic speech. It produces more natural speech, but it may suffer from sudden quality drops at concatenation points. Quality drops ("artifacts") can theoretically occur at every concatenation point. In thefollowing paragraphs, an experiment on the automatic detection of artifacts in concatenation speech synthesis is presented. The main goal was to build a classifier which would mark suspicious segments in synthetic speech in the same way a
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/ED1.1.00%2F02.0090" target="_blank" >ED1.1.00/02.0090: NTIS - Nové technologie pro informační společnost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Tackling the Complexity in Speech
ISBN
978-80-7308-558-2
Počet stran výsledku
10
Strana od-do
195-204
Počet stran knihy
230
Název nakladatele
Univerzita Karlova v Praze
Místo vydání
Praha
Kód UT WoS kapitoly
—