Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Concatenation Artifact Detection Trained from Listeners Evaluations

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F13%3A43919442" target="_blank" >RIV/49777513:23520/13:43919442 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://link.springer.com/chapter/10.1007%2F978-3-642-40585-3_22" target="_blank" >http://link.springer.com/chapter/10.1007%2F978-3-642-40585-3_22</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-642-40585-3_22" target="_blank" >10.1007/978-3-642-40585-3_22</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Concatenation Artifact Detection Trained from Listeners Evaluations

  • Popis výsledku v původním jazyce

    Unit selection is known for its ability to produce high-quality synthetic speech. In contrast with HMM-based synthesis, it produces more natural speech but it may suffer from sudden quality drops at concatenation points. The danger of quality deterioration can be reduced (but, unfortunately, not eliminated) by using very large speech corpora. In this paper, our first experiment with automatic artifact detection is presented. Firstly, a brief description of artifacts is given. Then, a listening test experiment, in which listeners evaluated speech synthesis artifacts, is described. The data gathered during the listening test were then used to train an SVM classifer. Finally, results of the SVM-based artifact detection in synthetic speech are discussed.

  • Název v anglickém jazyce

    Concatenation Artifact Detection Trained from Listeners Evaluations

  • Popis výsledku anglicky

    Unit selection is known for its ability to produce high-quality synthetic speech. In contrast with HMM-based synthesis, it produces more natural speech but it may suffer from sudden quality drops at concatenation points. The danger of quality deterioration can be reduced (but, unfortunately, not eliminated) by using very large speech corpora. In this paper, our first experiment with automatic artifact detection is presented. Firstly, a brief description of artifacts is given. Then, a listening test experiment, in which listeners evaluated speech synthesis artifacts, is described. The data gathered during the listening test were then used to train an SVM classifer. Finally, results of the SVM-based artifact detection in synthetic speech are discussed.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    JD - Využití počítačů, robotika a její aplikace

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/TA01011264" target="_blank" >TA01011264: Eliminace jazykových bariér handicapovaných diváků České televize II</a><br>

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2013

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Text, Speech, and Dialogue 16th International Conference, TSD 2013, Pilsen, Czech Republic, September 1-5, 2013. Proceedings

  • ISBN

    978-3-642-40584-6

  • ISSN

    0302-9743

  • e-ISSN

  • Počet stran výsledku

    8

  • Strana od-do

    169-176

  • Název nakladatele

    Springer

  • Místo vydání

    Heidelberg

  • Místo konání akce

    Plzeň

  • Datum konání akce

    1. 9. 2013

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku