Automatic Text-Independent Artifact Detection, Localization, and Classification in the Synthetic Speech
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F17%3A43932708" target="_blank" >RIV/49777513:23520/17:43932708 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.radioeng.cz/fulltexts/2017/17_04_1151_1160.pdf" target="_blank" >https://www.radioeng.cz/fulltexts/2017/17_04_1151_1160.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.13164/re.2017.1151" target="_blank" >10.13164/re.2017.1151</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Automatic Text-Independent Artifact Detection, Localization, and Classification in the Synthetic Speech
Popis výsledku v původním jazyce
The paper describes an experiment with statistical approaches to automatic detection, localization, and classification of the basic types of artifacts in the synthetic speech produced by the Czech text-to-speech system using the unit selection method. The aim of the first experiment is to detect the artifacts by the analysis of variances (ANOVA) and hypothesis testing. The second experiment is focused on localization of the detected artifacts by the Gaussian mixture models (GMM). Finally, the developed open-set artifact classifier is described. The influence of the length of the feature vector and its composition on the resulting artifact detection accuracy is also analyzed together with other factors affecting the stability of the artifact detection process. Further investigations have shown a relatively great influence of the number of mixtures and the type of a covariance matrix on the output artifact classification error rate as well as on the computational complexity. Results of the performed experiments confirm the functionality of the proposed artifact detector based on the ANOVA and hypothesis tests, and the GMM-based artifact localizer and classifier. The described statistical approaches represent the alternatives to the standard listening tests and the manual labeling of the artifacts.
Název v anglickém jazyce
Automatic Text-Independent Artifact Detection, Localization, and Classification in the Synthetic Speech
Popis výsledku anglicky
The paper describes an experiment with statistical approaches to automatic detection, localization, and classification of the basic types of artifacts in the synthetic speech produced by the Czech text-to-speech system using the unit selection method. The aim of the first experiment is to detect the artifacts by the analysis of variances (ANOVA) and hypothesis testing. The second experiment is focused on localization of the detected artifacts by the Gaussian mixture models (GMM). Finally, the developed open-set artifact classifier is described. The influence of the length of the feature vector and its composition on the resulting artifact detection accuracy is also analyzed together with other factors affecting the stability of the artifact detection process. Further investigations have shown a relatively great influence of the number of mixtures and the type of a covariance matrix on the output artifact classification error rate as well as on the computational complexity. Results of the performed experiments confirm the functionality of the proposed artifact detector based on the ANOVA and hypothesis tests, and the GMM-based artifact localizer and classifier. The described statistical approaches represent the alternatives to the standard listening tests and the manual labeling of the artifacts.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
<a href="/cs/project/GA16-04420S" target="_blank" >GA16-04420S: Kombinované využití fonetických a korpusově založených postupů při odstraňování rušivých jevů v řečové syntéze</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Radioengineering
ISSN
1210-2512
e-ISSN
—
Svazek periodika
26
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
10
Strana od-do
1151-1160
Kód UT WoS článku
000423270000032
EID výsledku v databázi Scopus
2-s2.0-85038078461