Compression of 3D Geographical Objects at Various Level of Detail
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F17%3A43929517" target="_blank" >RIV/49777513:23520/17:43929517 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-319-45123-7_26" target="_blank" >http://dx.doi.org/10.1007/978-3-319-45123-7_26</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-45123-7_26" target="_blank" >10.1007/978-3-319-45123-7_26</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Compression of 3D Geographical Objects at Various Level of Detail
Popis výsledku v původním jazyce
Compression of 3D objects has been recently discussed mainly in the domain of 3D computer graphics. However, more and more applications demonstrate that the third dimension plays an important role also in the domain of modelling and streaming of geographical objects. This is especially true for 3D city models and their distribution via internet. Despite the fact that compression of textual information related to geographical objects has a significant importance, in this paper we concentrate only on compression of geometry information and also on more complex geometries with irregular shapes. Considering the compression of 3D geographical objects, the 3D triangle meshes representation are used. 3D mesh compression is a way how to reduce the required cost of storage for triangle meshes without losing any details. The triangle is the basic geometric primitive for standard graphics rendering hardware. The compression algorithm aims at storing the input data into a binary file, that is as small as possible. For encoding of the mesh connectivity, our compression implements the popular EdgeBreaker algorithm. The character of geometry encoding is largely governed by the way connectivity is encoded. A popular choice of prediction for the EdgeBreaker algorithm is the parallelogram predictor. It has been observed in (Váša and Brunnett, 2013) that such prediction can be further improved by taking a two-step approach, first transmitting the complete connectivity and only afterwards transmitting the geometry. We used this approach to compress geographical objects at various level of detail. It does not bring an improvement for all datasets, especially meshes with many parallelogram shape prediction stencils do not benefit from it. However for complex geographical objects (bridges in our case) the used algorithm works nicely and after the compression the amount of data is even lower than 4% of the original file size.
Název v anglickém jazyce
Compression of 3D Geographical Objects at Various Level of Detail
Popis výsledku anglicky
Compression of 3D objects has been recently discussed mainly in the domain of 3D computer graphics. However, more and more applications demonstrate that the third dimension plays an important role also in the domain of modelling and streaming of geographical objects. This is especially true for 3D city models and their distribution via internet. Despite the fact that compression of textual information related to geographical objects has a significant importance, in this paper we concentrate only on compression of geometry information and also on more complex geometries with irregular shapes. Considering the compression of 3D geographical objects, the 3D triangle meshes representation are used. 3D mesh compression is a way how to reduce the required cost of storage for triangle meshes without losing any details. The triangle is the basic geometric primitive for standard graphics rendering hardware. The compression algorithm aims at storing the input data into a binary file, that is as small as possible. For encoding of the mesh connectivity, our compression implements the popular EdgeBreaker algorithm. The character of geometry encoding is largely governed by the way connectivity is encoded. A popular choice of prediction for the EdgeBreaker algorithm is the parallelogram predictor. It has been observed in (Váša and Brunnett, 2013) that such prediction can be further improved by taking a two-step approach, first transmitting the complete connectivity and only afterwards transmitting the geometry. We used this approach to compress geographical objects at various level of detail. It does not bring an improvement for all datasets, especially meshes with many parallelogram shape prediction stencils do not benefit from it. However for complex geographical objects (bridges in our case) the used algorithm works nicely and after the compression the amount of data is even lower than 4% of the original file size.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1506" target="_blank" >LO1506: Podpora udržitelnosti centra NTIS - Nové technologie pro informační společnost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
The Rise of Big Spatial Data
ISBN
978-3-319-45122-0
ISSN
1863-2246
e-ISSN
1863-2351
Počet stran výsledku
14
Strana od-do
359-372
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Ostrava
Datum konání akce
16. 3. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000419321700026