Does Poisson's downward continuation give physically meaningful results?
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F17%3A43929709" target="_blank" >RIV/49777513:23520/17:43929709 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s11200-016-1167-z" target="_blank" >http://dx.doi.org/10.1007/s11200-016-1167-z</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11200-016-1167-z" target="_blank" >10.1007/s11200-016-1167-z</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Does Poisson's downward continuation give physically meaningful results?
Popis výsledku v původním jazyce
The downward continuation (DWC) of the gravity anomalies from the Earth surface to the geoid is still probably the most problematic step in the precise geoid determination. It is this step that motivates the quasi-geoid users to opt for Molodenskij’s rather than Stokes’s theory. The reason for this is that the DWC is perceived as suffering from two major flaws: first, a physically meaningful DWC technique requires the knowledge of the irregular topographical density; second, the Poisson DWC which is the only physically meaningful technique we know, presents itself mathematically in the form of Fredholm integral equation of 1st kind. As Fredholm integral equations are often numerically ill-conditioned this makes some people believe that the DWC problem is physically ill-posed. According to a revered French mathematician Hadamard, the DWC problem is physically well-posed and as such gives always a finite and unique solution. The necessity of knowing the topographical density is, of course, a real problem but one that is being solved with an ever increasing accuracy; so sooner or later it will allow us to determine the geoid with the centimetre accuracy.
Název v anglickém jazyce
Does Poisson's downward continuation give physically meaningful results?
Popis výsledku anglicky
The downward continuation (DWC) of the gravity anomalies from the Earth surface to the geoid is still probably the most problematic step in the precise geoid determination. It is this step that motivates the quasi-geoid users to opt for Molodenskij’s rather than Stokes’s theory. The reason for this is that the DWC is perceived as suffering from two major flaws: first, a physically meaningful DWC technique requires the knowledge of the irregular topographical density; second, the Poisson DWC which is the only physically meaningful technique we know, presents itself mathematically in the form of Fredholm integral equation of 1st kind. As Fredholm integral equations are often numerically ill-conditioned this makes some people believe that the DWC problem is physically ill-posed. According to a revered French mathematician Hadamard, the DWC problem is physically well-posed and as such gives always a finite and unique solution. The necessity of knowing the topographical density is, of course, a real problem but one that is being solved with an ever increasing accuracy; so sooner or later it will allow us to determine the geoid with the centimetre accuracy.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10508 - Physical geography
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-08045S" target="_blank" >GA15-08045S: Metody validace, zpracování a použití dat družicových misí v geodézii a geofyzice</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Studia Geophysica et Geodaetica
ISSN
0039-3169
e-ISSN
—
Svazek periodika
61
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
17
Strana od-do
412-428
Kód UT WoS článku
000406827400002
EID výsledku v databázi Scopus
2-s2.0-85009469091