Design and Evaluation of WebGL-Based Heat Map Visualization for Big Point Data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F17%3A43931422" target="_blank" >RIV/49777513:23520/17:43931422 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-319-45123-7_2" target="_blank" >http://dx.doi.org/10.1007/978-3-319-45123-7_2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-45123-7_2" target="_blank" >10.1007/978-3-319-45123-7_2</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Design and Evaluation of WebGL-Based Heat Map Visualization for Big Point Data
Popis výsledku v původním jazyce
Depicting a large number of points on a map may lead to overplotting and to a visual clutter. One of the widely accepted visualization methods that provides a good overview of a spatial distribution of a large number of points is a heat map. Interactions for efficient data exploration, such as zooming, filtering or parameters’ adjustments, are highly demanding on the heat map construction. This is true especially in the case of big data. In this paper, we focus on a novel approach of estimating the kernel density and heat map visualization by utilizing a graphical processing unit (GPU). We designed a web-based JavaScript library dedicated to heat map rendering and user interactions through WebGL. The designed library enables to render a heat map as an overlay over a background map provided by a third party API (e.g. Open Layers) in the scope of milliseconds, even for data size exceeding one million points. In order to validate our approach, we designed a demo application visualizing a car accident dataset in the Great Britain. The described solution proves fast rendering times (below 100 ms) even for dataset up to 1.5 million points and outperforms mainstream systems such as the Google Maps API, Leaflet heat map plugin or ESRI’s ArcGIS online. Such performance enables interactive adjustments of the heat map parameters required by various domain experts. The described implementation is a part of the WebGLayer open source information visualization library.
Název v anglickém jazyce
Design and Evaluation of WebGL-Based Heat Map Visualization for Big Point Data
Popis výsledku anglicky
Depicting a large number of points on a map may lead to overplotting and to a visual clutter. One of the widely accepted visualization methods that provides a good overview of a spatial distribution of a large number of points is a heat map. Interactions for efficient data exploration, such as zooming, filtering or parameters’ adjustments, are highly demanding on the heat map construction. This is true especially in the case of big data. In this paper, we focus on a novel approach of estimating the kernel density and heat map visualization by utilizing a graphical processing unit (GPU). We designed a web-based JavaScript library dedicated to heat map rendering and user interactions through WebGL. The designed library enables to render a heat map as an overlay over a background map provided by a third party API (e.g. Open Layers) in the scope of milliseconds, even for data size exceeding one million points. In order to validate our approach, we designed a demo application visualizing a car accident dataset in the Great Britain. The described solution proves fast rendering times (below 100 ms) even for dataset up to 1.5 million points and outperforms mainstream systems such as the Google Maps API, Leaflet heat map plugin or ESRI’s ArcGIS online. Such performance enables interactive adjustments of the heat map parameters required by various domain experts. The described implementation is a part of the WebGLayer open source information visualization library.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
R - Projekt Ramcoveho programu EK
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
The Rise of Big Spatial Data
ISBN
978-3-319-45122-0
ISSN
1863-2246
e-ISSN
1863-2351
Počet stran výsledku
14
Strana od-do
13-26
Název nakladatele
Springer
Místo vydání
Heidelberg
Místo konání akce
Ostrava
Datum konání akce
16. 3. 2016
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
000419321700002