Stacked Autoencoders for the P300 Component Detection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F17%3A43931861" target="_blank" >RIV/49777513:23520/17:43931861 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.3389/fnins.2017.00302" target="_blank" >http://dx.doi.org/10.3389/fnins.2017.00302</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3389/fnins.2017.00302" target="_blank" >10.3389/fnins.2017.00302</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Stacked Autoencoders for the P300 Component Detection
Popis výsledku v původním jazyce
Using a combination of unsupervised pre-training and subsequent fine-tuning, deep neural networks have become one of the most reliable classification methods. The aim of the experiments subsequently presented was to verify if deep learning-based models can also perform well for single trial P300 classification with possible application to P300-based brain-computer interfaces. The P300 data used were recorded in the EEG/ERP laboratory at the Department of Computer Science and Engineering, University of West Bohemia, and are publicly available. Stacked autoencoders were implemented and compared with some of the currently most reliable state-of-the-art methods, such as LDA and multi-layer perceptron. The parameters of stacked autoencoders were optimized empirically. Subsequently, fine-tuning using backpropagation was performed. The architecture of the neural network was 209-130-100-50-20-2. The classifiers were trained on a dataset merged from four subjects and subsequently tested on different 11 subjects without further training. The trained SAE achieved 69.2% accuracy that was higher (p < 0.01) than the accuracy of MLP (64.9%) and LDA (65.9%). The recall of 58.8% was slightly higher when compared with MLP (56.2%) and LDA (58.4%).
Název v anglickém jazyce
Stacked Autoencoders for the P300 Component Detection
Popis výsledku anglicky
Using a combination of unsupervised pre-training and subsequent fine-tuning, deep neural networks have become one of the most reliable classification methods. The aim of the experiments subsequently presented was to verify if deep learning-based models can also perform well for single trial P300 classification with possible application to P300-based brain-computer interfaces. The P300 data used were recorded in the EEG/ERP laboratory at the Department of Computer Science and Engineering, University of West Bohemia, and are publicly available. Stacked autoencoders were implemented and compared with some of the currently most reliable state-of-the-art methods, such as LDA and multi-layer perceptron. The parameters of stacked autoencoders were optimized empirically. Subsequently, fine-tuning using backpropagation was performed. The architecture of the neural network was 209-130-100-50-20-2. The classifiers were trained on a dataset merged from four subjects and subsequently tested on different 11 subjects without further training. The trained SAE achieved 69.2% accuracy that was higher (p < 0.01) than the accuracy of MLP (64.9%) and LDA (65.9%). The recall of 58.8% was slightly higher when compared with MLP (56.2%) and LDA (58.4%).
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1506" target="_blank" >LO1506: Podpora udržitelnosti centra NTIS - Nové technologie pro informační společnost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Frontiers in Neuroscience
ISSN
1662-453X
e-ISSN
—
Svazek periodika
11
Číslo periodika v rámci svazku
302
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
9
Strana od-do
1-9
Kód UT WoS článku
000406529900001
EID výsledku v databázi Scopus
2-s2.0-85020069785