Comparison of convolutional and recurrent neural networks for the P300 detection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F21%3A43961411" target="_blank" >RIV/49777513:23520/21:43961411 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.5220/0010248201860191" target="_blank" >https://doi.org/10.5220/0010248201860191</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5220/0010248201860191" target="_blank" >10.5220/0010248201860191</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comparison of convolutional and recurrent neural networks for the P300 detection
Popis výsledku v původním jazyce
Single-trial classification of the P300 component is a difficult task because of the low signal to noise ratio. However, its application to brain-computer interface development can significantly improve the usability of these systems. This paper presents a comparison of baseline linear discriminant analysis (LDA) with convolutional (CNN) and recurrent neural networks (RNN) for the P300 classification. The experiments were based on a large multi-subject publicly available dataset of school-age children. Several hyperparameter choices were experimentally investigated and discussed. The presented CNN slightly outperformed both RNN and baseline LDA classifier (the accuracy of 63.2 % vs. 61.3 % and 62.8 %). The differences were most pronounced in precision and recall. Implications of the results and proposals for future work, e.g., stacked CNN–LSTM, are discussed.
Název v anglickém jazyce
Comparison of convolutional and recurrent neural networks for the P300 detection
Popis výsledku anglicky
Single-trial classification of the P300 component is a difficult task because of the low signal to noise ratio. However, its application to brain-computer interface development can significantly improve the usability of these systems. This paper presents a comparison of baseline linear discriminant analysis (LDA) with convolutional (CNN) and recurrent neural networks (RNN) for the P300 classification. The experiments were based on a large multi-subject publicly available dataset of school-age children. Several hyperparameter choices were experimentally investigated and discussed. The presented CNN slightly outperformed both RNN and baseline LDA classifier (the accuracy of 63.2 % vs. 61.3 % and 62.8 %). The differences were most pronounced in precision and recall. Implications of the results and proposals for future work, e.g., stacked CNN–LSTM, are discussed.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 14th International Joint Conference on Biomedical Engineering Systems and Technologies - (Volume 4)
ISBN
978-989-758-490-9
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
186-191
Název nakladatele
SCITEPRESS – Science and Technology Publications, Lda
Místo vydání
Setúbal
Místo konání akce
online
Datum konání akce
11. 2. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000664110100020