Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Evaluation of convolutional neural networks using a large multi-subject P300 dataset

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F20%3A43957272" target="_blank" >RIV/49777513:23520/20:43957272 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://VarekaCNN_paper.pdf" target="_blank" >http://VarekaCNN_paper.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.bspc.2019.101837" target="_blank" >10.1016/j.bspc.2019.101837</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Evaluation of convolutional neural networks using a large multi-subject P300 dataset

  • Popis výsledku v původním jazyce

    Deep neural networks (DNN) have been studied in various machine learning areas. For example, event-related potential (ERP) signal classification is a highly complex task potentially suitable for DNN as signal-to-noise ratio is low, and underlying spatial and temporal patterns display a large intra- and intersubject variability. Convolutional neural networks (CNN) have been compared with baseline traditional models, i.e. linear discriminant analysis (LDA) and support vector machines (SVM) for single trial classification using a large multi-subject publicly available P300 dataset of school-age children (138 males and 112 females). For single trial classification, classification accuracy stayed between 62% and 64% for all tested classification models. When applying the trained classification models to averaged trials, accuracy increased to 76–79% without significant differences among classification models. CNN did not prove superior to baseline for the tested dataset. Comparison with related literature, limitations and future directions are discussed.

  • Název v anglickém jazyce

    Evaluation of convolutional neural networks using a large multi-subject P300 dataset

  • Popis výsledku anglicky

    Deep neural networks (DNN) have been studied in various machine learning areas. For example, event-related potential (ERP) signal classification is a highly complex task potentially suitable for DNN as signal-to-noise ratio is low, and underlying spatial and temporal patterns display a large intra- and intersubject variability. Convolutional neural networks (CNN) have been compared with baseline traditional models, i.e. linear discriminant analysis (LDA) and support vector machines (SVM) for single trial classification using a large multi-subject publicly available P300 dataset of school-age children (138 males and 112 females). For single trial classification, classification accuracy stayed between 62% and 64% for all tested classification models. When applying the trained classification models to averaged trials, accuracy increased to 76–79% without significant differences among classification models. CNN did not prove superior to baseline for the tested dataset. Comparison with related literature, limitations and future directions are discussed.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LO1506" target="_blank" >LO1506: Podpora udržitelnosti centra NTIS - Nové technologie pro informační společnost</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Biomedical Signal Processing and Control

  • ISSN

    1746-8094

  • e-ISSN

  • Svazek periodika

    58

  • Číslo periodika v rámci svazku

    APR 2020

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    7

  • Strana od-do

    1-7

  • Kód UT WoS článku

    000518869700013

  • EID výsledku v databázi Scopus

    2-s2.0-85077454141