Radial basis function approximations: comparison and applications
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F17%3A43932144" target="_blank" >RIV/49777513:23520/17:43932144 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.apm.2017.07.033" target="_blank" >http://dx.doi.org/10.1016/j.apm.2017.07.033</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.apm.2017.07.033" target="_blank" >10.1016/j.apm.2017.07.033</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Radial basis function approximations: comparison and applications
Popis výsledku v původním jazyce
Approximation of scattered data is often a task in many engineering problems. The radial basis function (RBF) approximation is appropriate for large scattered (unordered) datasets in d-dimensional space. This approach is useful for a higher dimension d > 2, because the other methods require the conversion of a scattered dataset to an ordered dataset (i.e. a semi-regular mesh is obtained by using some tessellation techniques), which is computationally expensive. The RBF approximation is non-separable, as it is based on the distance between two points. This method leads to a solution of linear system of equations (LSE) Ac=h. In this paper several RBF approximation methods are briefly introduced and a comparison of those is made with respect to the stability and accuracy of computation. The proposed RBF approximation offers lower memory requirements and better quality of approximation
Název v anglickém jazyce
Radial basis function approximations: comparison and applications
Popis výsledku anglicky
Approximation of scattered data is often a task in many engineering problems. The radial basis function (RBF) approximation is appropriate for large scattered (unordered) datasets in d-dimensional space. This approach is useful for a higher dimension d > 2, because the other methods require the conversion of a scattered dataset to an ordered dataset (i.e. a semi-regular mesh is obtained by using some tessellation techniques), which is computationally expensive. The RBF approximation is non-separable, as it is based on the distance between two points. This method leads to a solution of linear system of equations (LSE) Ac=h. In this paper several RBF approximation methods are briefly introduced and a comparison of those is made with respect to the stability and accuracy of computation. The proposed RBF approximation offers lower memory requirements and better quality of approximation
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-05534S" target="_blank" >GA17-05534S: Meshless metody pro vizualizaci velkých časově-prostorových vektorových dat</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Mathematical Modelling
ISSN
0307-904X
e-ISSN
—
Svazek periodika
51
Číslo periodika v rámci svazku
neuvedeno
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
16
Strana od-do
728-743
Kód UT WoS článku
000412253100041
EID výsledku v databázi Scopus
2-s2.0-85028988349