Combining Textual and Speech Features in the NLI Task Using State-of-the-Art Machine Learning Techniques
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F17%3A43932939" target="_blank" >RIV/49777513:23520/17:43932939 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.aclweb.org/anthology/W/W17/W17-5021.pdf" target="_blank" >http://www.aclweb.org/anthology/W/W17/W17-5021.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.18653/v1/W17-5021" target="_blank" >10.18653/v1/W17-5021</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Combining Textual and Speech Features in the NLI Task Using State-of-the-Art Machine Learning Techniques
Popis výsledku v původním jazyce
We summarize the involvement of our CEMI team in the Native Language Identification shared task, NLI Shared Task~2017, which deals with both textual and speech input data. We submitted the results achieved by using three different system architectures; each of them combines multiple supervised learning models trained on various feature sets. As expected, better results are achieved with the systems that use both the textual data and the spoken responses. Combining the input data of two different modalities led to a rather dramatic improvement in classification performance. Our best performing method is based on a set of feed-forward neural networks whose hidden-layer outputs are combined together using a softmax layer. We achieved a macro-averaged F1 score of 0.9257 on the evaluation (unseen) test set and our team placed first in the main task together with other three teams.
Název v anglickém jazyce
Combining Textual and Speech Features in the NLI Task Using State-of-the-Art Machine Learning Techniques
Popis výsledku anglicky
We summarize the involvement of our CEMI team in the Native Language Identification shared task, NLI Shared Task~2017, which deals with both textual and speech input data. We submitted the results achieved by using three different system architectures; each of them combines multiple supervised learning models trained on various feature sets. As expected, better results are achieved with the systems that use both the textual data and the spoken responses. Combining the input data of two different modalities led to a rather dramatic improvement in classification performance. Our best performing method is based on a set of feed-forward neural networks whose hidden-layer outputs are combined together using a softmax layer. We achieved a macro-averaged F1 score of 0.9257 on the evaluation (unseen) test set and our team placed first in the main task together with other three teams.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP103%2F12%2FG084" target="_blank" >GBP103/12/G084: Centrum pro multi-modální interpretaci dat velkého rozsahu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů