Decomposition formula for jump diffusion models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F18%3A43930096" target="_blank" >RIV/49777513:23520/18:43930096 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1142/S0219024918500528" target="_blank" >https://doi.org/10.1142/S0219024918500528</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0219024918500528" target="_blank" >10.1142/S0219024918500528</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Decomposition formula for jump diffusion models
Popis výsledku v původním jazyce
In this paper we derive a generic decomposition of the option pricing formula for models with finite activity jumps in the underlying asset price process (SVJ models). This is an extension of the well-known result by Alos (2012) for Heston (1993) SV model. Moreover, explicit approximation formulas for option prices are introduced for a popular class of SVJ models - models utilizing a variance process postulated by Heston (1993). In particular, we inspect in detail the approximation formula for the Bates (1996) model with log-normal jump sizes and we provide a numerical comparison with the industry standard - Fourier transform pricing methodology. For this model, we also reformulate the approximation formula in terms of implied volatilities. The main advantages of the introduced pricing approximations are twofold. Firstly, we are able to significantly improve computation efficiency (while preserving reasonable approximation errors) and secondly, the formula can provide an intuition on the volatility smile behaviour under a specific SVJ model.
Název v anglickém jazyce
Decomposition formula for jump diffusion models
Popis výsledku anglicky
In this paper we derive a generic decomposition of the option pricing formula for models with finite activity jumps in the underlying asset price process (SVJ models). This is an extension of the well-known result by Alos (2012) for Heston (1993) SV model. Moreover, explicit approximation formulas for option prices are introduced for a popular class of SVJ models - models utilizing a variance process postulated by Heston (1993). In particular, we inspect in detail the approximation formula for the Bates (1996) model with log-normal jump sizes and we provide a numerical comparison with the industry standard - Fourier transform pricing methodology. For this model, we also reformulate the approximation formula in terms of implied volatilities. The main advantages of the introduced pricing approximations are twofold. Firstly, we are able to significantly improve computation efficiency (while preserving reasonable approximation errors) and secondly, the formula can provide an intuition on the volatility smile behaviour under a specific SVJ model.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-16680S" target="_blank" >GA18-16680S: Rough modely frakcionální stochastické volatility</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Theoretical and Applied Finance
ISSN
0219-0249
e-ISSN
—
Svazek periodika
21
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
SG - Singapurská republika
Počet stran výsledku
36
Strana od-do
1850052-1-1850052-36
Kód UT WoS článku
000455592700004
EID výsledku v databázi Scopus
2-s2.0-85056101528