Unifying pricing formula for several stochastic volatility models with jumps
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F17%3A43930082" target="_blank" >RIV/49777513:23520/17:43930082 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1002/asmb.2248" target="_blank" >http://dx.doi.org/10.1002/asmb.2248</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/asmb.2248" target="_blank" >10.1002/asmb.2248</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Unifying pricing formula for several stochastic volatility models with jumps
Popis výsledku v původním jazyce
In this paper, we introduce a unifying approach to option pricing under continuous-time stochastic volatility models with jumps. For European style options, a new semi-closed pricing formula is derived using the generalized complex Fourier transform of the corresponding partial integro-differential equation. This approach is successfully applied to models with different volatility diffusion and jump processes. We also discuss how to price options with different payoff functions in a similar way. In particular, we focus on a log-normal and a log-uniform jump diffusion stochastic volatility model, originally introduced by Bates and Yani and Hanson respectively. The comparison of existing and newly proposed option pricing formulas with respect to time-efficiency and precision is discussed. We also derive a representation of an option price under a new approximative fractional jump diffusion model that differs from the aforementioned models, especially for the out-of-the money contracts.
Název v anglickém jazyce
Unifying pricing formula for several stochastic volatility models with jumps
Popis výsledku anglicky
In this paper, we introduce a unifying approach to option pricing under continuous-time stochastic volatility models with jumps. For European style options, a new semi-closed pricing formula is derived using the generalized complex Fourier transform of the corresponding partial integro-differential equation. This approach is successfully applied to models with different volatility diffusion and jump processes. We also discuss how to price options with different payoff functions in a similar way. In particular, we focus on a log-normal and a log-uniform jump diffusion stochastic volatility model, originally introduced by Bates and Yani and Hanson respectively. The comparison of existing and newly proposed option pricing formulas with respect to time-efficiency and precision is discussed. We also derive a representation of an option price under a new approximative fractional jump diffusion model that differs from the aforementioned models, especially for the out-of-the money contracts.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50206 - Finance
Návaznosti výsledku
Projekt
<a href="/cs/project/GA14-11559S" target="_blank" >GA14-11559S: Analýza frakcionálních modelů stochastické volatility a jejich implementace v gridu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Stochastic Models in Business and Industry
ISSN
1526-4025
e-ISSN
—
Svazek periodika
33
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
21
Strana od-do
422-442
Kód UT WoS článku
000407654400010
EID výsledku v databázi Scopus
2-s2.0-85017385020