Actor-Critic Off-Policy Learning for Optimal Control of Multiple-Model Discrete-Time Systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F18%3A43949872" target="_blank" >RIV/49777513:23520/18:43949872 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/TCYB.2016.2618926" target="_blank" >http://dx.doi.org/10.1109/TCYB.2016.2618926</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TCYB.2016.2618926" target="_blank" >10.1109/TCYB.2016.2618926</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Actor-Critic Off-Policy Learning for Optimal Control of Multiple-Model Discrete-Time Systems
Popis výsledku v původním jazyce
In this paper, motivated by human neurocognitive experiments, a model-free off-policy reinforcement learning algorithm is developed to solve the optimal tracking control of multiple-model linear discrete-time systems. First, an adaptive self-organizing map neural network is used to determine the system behavior from measured data and to assign a responsibility signal to each of system possible behaviors. A new model is added if a sudden change of system behavior is detected from the measured data and the behavior has not been previously detected. A value function is represented by partially weighted value functions. Then, the off-policy iteration algorithm is generalized to multiple-model learning to find a solution without any knowledge about the system dynamics or reference trajectory dynamics. The off-policy approach helps to increase data efficiency and speed of tuning since a stream of experiences obtained from executing a behavior policy is reused to update several value functions corresponding to different learning policies sequentially. Two numerical examples serve as a demonstration of the off-policy algorithm performance.
Název v anglickém jazyce
Actor-Critic Off-Policy Learning for Optimal Control of Multiple-Model Discrete-Time Systems
Popis výsledku anglicky
In this paper, motivated by human neurocognitive experiments, a model-free off-policy reinforcement learning algorithm is developed to solve the optimal tracking control of multiple-model linear discrete-time systems. First, an adaptive self-organizing map neural network is used to determine the system behavior from measured data and to assign a responsibility signal to each of system possible behaviors. A new model is added if a sudden change of system behavior is detected from the measured data and the behavior has not been previously detected. A value function is represented by partially weighted value functions. Then, the off-policy iteration algorithm is generalized to multiple-model learning to find a solution without any knowledge about the system dynamics or reference trajectory dynamics. The off-policy approach helps to increase data efficiency and speed of tuning since a stream of experiences obtained from executing a behavior policy is reused to update several value functions corresponding to different learning policies sequentially. Two numerical examples serve as a demonstration of the off-policy algorithm performance.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Cybernetics
ISSN
2168-2267
e-ISSN
—
Svazek periodika
48
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
29-40
Kód UT WoS článku
000418291400003
EID výsledku v databázi Scopus
2-s2.0-84994252445