Symbolic Regression Methods for Reinforcement Learning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00353216" target="_blank" >RIV/68407700:21230/21:00353216 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21730/21:00353216
Výsledek na webu
<a href="https://doi.org/10.1109/ACCESS.2021.3119000" target="_blank" >https://doi.org/10.1109/ACCESS.2021.3119000</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2021.3119000" target="_blank" >10.1109/ACCESS.2021.3119000</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Symbolic Regression Methods for Reinforcement Learning
Popis výsledku v původním jazyce
Reinforcement learning algorithms can solve dynamic decision-making and optimal control problems. With continuous-valued state and input variables, reinforcement learning algorithms must rely on function approximators to represent the value function and policy mappings. Commonly used numerical approximators, such as neural networks or basis function expansions, have two main drawbacks: they are black-box models offering little insight into the mappings learned, and they require extensive trial and error tuning of their hyper-parameters. In this paper, we propose a new approach to constructing smooth value functions in the form of analytic expressions by using symbolic regression. We introduce three off-line methods for finding value functions based on a state-transition model: symbolic value iteration, symbolic policy iteration, and a direct solution of the Bellman equation. The methods are illustrated on four nonlinear control problems: velocity control under friction, one-link and two-link pendulum swing-up, and magnetic manipulation. The results show that the value functions yield well-performing policies and are compact, mathematically tractable, and easy to plug into other algorithms. This makes them potentially suitable for further analysis of the closed-loop system. A comparison with an alternative approach using neural networks shows that our method outperforms the neural network-based one.
Název v anglickém jazyce
Symbolic Regression Methods for Reinforcement Learning
Popis výsledku anglicky
Reinforcement learning algorithms can solve dynamic decision-making and optimal control problems. With continuous-valued state and input variables, reinforcement learning algorithms must rely on function approximators to represent the value function and policy mappings. Commonly used numerical approximators, such as neural networks or basis function expansions, have two main drawbacks: they are black-box models offering little insight into the mappings learned, and they require extensive trial and error tuning of their hyper-parameters. In this paper, we propose a new approach to constructing smooth value functions in the form of analytic expressions by using symbolic regression. We introduce three off-line methods for finding value functions based on a state-transition model: symbolic value iteration, symbolic policy iteration, and a direct solution of the Bellman equation. The methods are illustrated on four nonlinear control problems: velocity control under friction, one-link and two-link pendulum swing-up, and magnetic manipulation. The results show that the value functions yield well-performing policies and are compact, mathematically tractable, and easy to plug into other algorithms. This makes them potentially suitable for further analysis of the closed-loop system. A comparison with an alternative approach using neural networks shows that our method outperforms the neural network-based one.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Access
ISSN
2169-3536
e-ISSN
2169-3536
Svazek periodika
9
Číslo periodika v rámci svazku
October
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
139697-139711
Kód UT WoS článku
000709067500001
EID výsledku v databázi Scopus
2-s2.0-85117079506