Optimal Control via Reinforcement Learning with Symbolic Policy Approximation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F17%3A00316260" target="_blank" >RIV/68407700:21730/17:00316260 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2405896317312594" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2405896317312594</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ifacol.2017.08.805" target="_blank" >10.1016/j.ifacol.2017.08.805</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Optimal Control via Reinforcement Learning with Symbolic Policy Approximation
Popis výsledku v původním jazyce
Model-based reinforcement learning (RL) algorithms can be used to derive optimal control laws for nonlinear dynamic systems. With continuous-valued state and input variables, RL algorithms have to rely on function approximators to represent the value function and policy mappings. This paper addresses the problem of finding a smooth policy based on the value function represented by means of a basis-function approximator. We first show that policies derived directly from the value function or represented explicitly by the same type of approximator lead to inferior control performance, manifested by non-smooth control signals and steady-state errors. We then propose a novel method to construct a smooth policy represented by an analytic equation, obtained by means of symbolic regression. The proposed method is illustrated on a reference-tracking problem of a 1-DOF robot arm operating under the influence of gravity. The results show that the analytic control law performs at least equally well as the original numerically approximated policy, while it leads to much smoother control signals. In addition, the analytic function is readable (as opposed to black-box approximators) and can be used in further analysis and synthesis of the closed loop.
Název v anglickém jazyce
Optimal Control via Reinforcement Learning with Symbolic Policy Approximation
Popis výsledku anglicky
Model-based reinforcement learning (RL) algorithms can be used to derive optimal control laws for nonlinear dynamic systems. With continuous-valued state and input variables, RL algorithms have to rely on function approximators to represent the value function and policy mappings. This paper addresses the problem of finding a smooth policy based on the value function represented by means of a basis-function approximator. We first show that policies derived directly from the value function or represented explicitly by the same type of approximator lead to inferior control performance, manifested by non-smooth control signals and steady-state errors. We then propose a novel method to construct a smooth policy represented by an analytic equation, obtained by means of symbolic regression. The proposed method is illustrated on a reference-tracking problem of a 1-DOF robot arm operating under the influence of gravity. The results show that the analytic control law performs at least equally well as the original numerically approximated policy, while it leads to much smoother control signals. In addition, the analytic function is readable (as opposed to black-box approximators) and can be used in further analysis and synthesis of the closed loop.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-22731S" target="_blank" >GA15-22731S: Symbolická regrese pro posilované učení ve spojitých prostorech</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the IFAC 2017 World Congress
ISBN
—
ISSN
2405-8963
e-ISSN
2405-8963
Počet stran výsledku
6
Strana od-do
4162-4167
Název nakladatele
Elsevier
Místo vydání
Kidlington Oxford OX GB
Místo konání akce
Toulouse
Datum konání akce
9. 7. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—