Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Multiple critical points of saddle geometry functionals

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F18%3A43950550" target="_blank" >RIV/49777513:23520/18:43950550 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.na.2018.01.008" target="_blank" >https://doi.org/10.1016/j.na.2018.01.008</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.na.2018.01.008" target="_blank" >10.1016/j.na.2018.01.008</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Multiple critical points of saddle geometry functionals

  • Popis výsledku v původním jazyce

    We study the multiplicity of critical points for continuously differentiable functionals on real Banach spaces. We prove that a functional which satisfies the assumptions of the Saddle Point Theorem and moreover is bounded from below has at least three critical points. Apparently, there is a global minimizer and a saddle point and we show the existence of a third critical point. The idea of the proof is based on the minus-gradient flow. This result is closely related to the three critical points theorem of H. Brezis and L. Nirenberg which assumes a local linking. Finally, we apply the result on the Dirichlet problem for semilinear stationary PDEs. The analysis includes, for example, the existence of multiple stationary solutions of bistable (or Allen–Cahn) equation and semipositone problems.

  • Název v anglickém jazyce

    Multiple critical points of saddle geometry functionals

  • Popis výsledku anglicky

    We study the multiplicity of critical points for continuously differentiable functionals on real Banach spaces. We prove that a functional which satisfies the assumptions of the Saddle Point Theorem and moreover is bounded from below has at least three critical points. Apparently, there is a global minimizer and a saddle point and we show the existence of a third critical point. The idea of the proof is based on the minus-gradient flow. This result is closely related to the three critical points theorem of H. Brezis and L. Nirenberg which assumes a local linking. Finally, we apply the result on the Dirichlet problem for semilinear stationary PDEs. The analysis includes, for example, the existence of multiple stationary solutions of bistable (or Allen–Cahn) equation and semipositone problems.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LO1506" target="_blank" >LO1506: Podpora udržitelnosti centra NTIS - Nové technologie pro informační společnost</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Nonlinear Analysis

  • ISSN

    0362-546X

  • e-ISSN

  • Svazek periodika

    170

  • Číslo periodika v rámci svazku

    May

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    20

  • Strana od-do

    238-257

  • Kód UT WoS článku

    000425993300011

  • EID výsledku v databázi Scopus

    2-s2.0-85041487049