Modifications of unsupervised neural networks for single trial P300 detection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F18%3A43950915" target="_blank" >RIV/49777513:23520/18:43950915 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.14311/nnw.2018.28.001" target="_blank" >http://dx.doi.org/10.14311/nnw.2018.28.001</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14311/nnw.2018.28.001" target="_blank" >10.14311/nnw.2018.28.001</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Modifications of unsupervised neural networks for single trial P300 detection
Popis výsledku v původním jazyce
P300 brain-computer interfaces (BCIs) have been gaining attention in recent years. To achieve good performance and accuracy, it is necessary to optimize both feature extraction and classification algorithms. This article aims at verifying whether supervised learning models based on self-organizing maps (SOM) or adaptive resonance theory (ART) can be useful for this task. For feature extraction, the state-of-the-art Windowed means paradigm was used. For classification, proposed classifiers were compared with state-of-the-art classifiers used in BCI research, such as Bayesian Linear Discriminant Analysis, or shrinkage LDA. Publicly available datasets from 15 healthy subjects were used for the experiments. The results indicated that SOM-based models yield better results than ART-based models. The best performance was achieved by the LASSO model that was comparable to state-of-the-art BCI classifiers. Further possibilities for improvements are discussed
Název v anglickém jazyce
Modifications of unsupervised neural networks for single trial P300 detection
Popis výsledku anglicky
P300 brain-computer interfaces (BCIs) have been gaining attention in recent years. To achieve good performance and accuracy, it is necessary to optimize both feature extraction and classification algorithms. This article aims at verifying whether supervised learning models based on self-organizing maps (SOM) or adaptive resonance theory (ART) can be useful for this task. For feature extraction, the state-of-the-art Windowed means paradigm was used. For classification, proposed classifiers were compared with state-of-the-art classifiers used in BCI research, such as Bayesian Linear Discriminant Analysis, or shrinkage LDA. Publicly available datasets from 15 healthy subjects were used for the experiments. The results indicated that SOM-based models yield better results than ART-based models. The best performance was achieved by the LASSO model that was comparable to state-of-the-art BCI classifiers. Further possibilities for improvements are discussed
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1506" target="_blank" >LO1506: Podpora udržitelnosti centra NTIS - Nové technologie pro informační společnost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Neural Network World
ISSN
1210-0552
e-ISSN
—
Svazek periodika
28
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
16
Strana od-do
1-16
Kód UT WoS článku
000428260700001
EID výsledku v databázi Scopus
2-s2.0-85042914158