Analyzing Energy Requirements of Meta-Differential Evolution for Future Wearable Medical Devices
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F18%3A43952021" target="_blank" >RIV/49777513:23520/18:43952021 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-981-10-9023-3_44" target="_blank" >http://dx.doi.org/10.1007/978-981-10-9023-3_44</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-981-10-9023-3_44" target="_blank" >10.1007/978-981-10-9023-3_44</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Analyzing Energy Requirements of Meta-Differential Evolution for Future Wearable Medical Devices
Popis výsledku v původním jazyce
Recent advances in clinical engineering include development of physiological models to deliver optimized healthcare. Physiological model comprises a number of equations to relate biomedical signals. Each equation contains a set of coefficients. Determining the coefficients is a complex task as the models are non-linear. Therefore, development of the models must be accompanied by a development of methods to determine model coefficients. With the advent of wearable medical devices, we have to consider energy require-ments of the models and the methods. Considering an illustrative case of type-1 diabetes mellitus patients, we already demonstrated that Meta-Differential Evolution outperforms analytical methods, when determining coefficients of gl-cose dynamics. In this paper, we analyze convergence of the Meta-Differential Evolution, running time and associated power consumption on a single board computer with a system-on-a-chip – Cortex-A8 AM335x. Based on the analysis, we recommend splitting the process of determining the coefficients into two phases. First phase determines the initial, per-patient optimized coefficients. Second phase is an energetically efficient update of these coefficients with new, continuously measured signal of the patient. Meta-Differential Evolution searches for optimal coefficients by evolving a number of generations of candidate coefficients, using a number of evolutionary strategies. We demonstrate that the proposed approach significantly reduces the number of candidate coefficients to evaluate, while achieving the desired accuracy. This positively reflects in the lifetime of wearable device’s battery. Specifically, calculating coefficient’s update took 0.05Ws only. It shows the feasibility of using Meta-Differential Evolution with its improved accuracy for blood glucose calculations in a wearable device
Název v anglickém jazyce
Analyzing Energy Requirements of Meta-Differential Evolution for Future Wearable Medical Devices
Popis výsledku anglicky
Recent advances in clinical engineering include development of physiological models to deliver optimized healthcare. Physiological model comprises a number of equations to relate biomedical signals. Each equation contains a set of coefficients. Determining the coefficients is a complex task as the models are non-linear. Therefore, development of the models must be accompanied by a development of methods to determine model coefficients. With the advent of wearable medical devices, we have to consider energy require-ments of the models and the methods. Considering an illustrative case of type-1 diabetes mellitus patients, we already demonstrated that Meta-Differential Evolution outperforms analytical methods, when determining coefficients of gl-cose dynamics. In this paper, we analyze convergence of the Meta-Differential Evolution, running time and associated power consumption on a single board computer with a system-on-a-chip – Cortex-A8 AM335x. Based on the analysis, we recommend splitting the process of determining the coefficients into two phases. First phase determines the initial, per-patient optimized coefficients. Second phase is an energetically efficient update of these coefficients with new, continuously measured signal of the patient. Meta-Differential Evolution searches for optimal coefficients by evolving a number of generations of candidate coefficients, using a number of evolutionary strategies. We demonstrate that the proposed approach significantly reduces the number of candidate coefficients to evaluate, while achieving the desired accuracy. This positively reflects in the lifetime of wearable device’s battery. Specifically, calculating coefficient’s update took 0.05Ws only. It shows the feasibility of using Meta-Differential Evolution with its improved accuracy for blood glucose calculations in a wearable device
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1506" target="_blank" >LO1506: Podpora udržitelnosti centra NTIS - Nové technologie pro informační společnost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
World Congress on Medical Physics and Biomedical Engineering 2018
ISBN
978-981-10-9022-6
ISSN
1680-0737
e-ISSN
neuvedeno
Počet stran výsledku
4
Strana od-do
249-252
Název nakladatele
Springer Nature
Místo vydání
Singapore
Místo konání akce
Funchal, Madeira, Portugal
Datum konání akce
3. 6. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000449744300044