De–randomized Meta-Differential Evolution for Calculating and Predicting Glucose Levels
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F19%3A43956220" target="_blank" >RIV/49777513:23520/19:43956220 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11140/19:10402654
Výsledek na webu
<a href="http://dx.doi.org/10.1109/CBMS.2019.00064" target="_blank" >http://dx.doi.org/10.1109/CBMS.2019.00064</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CBMS.2019.00064" target="_blank" >10.1109/CBMS.2019.00064</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
De–randomized Meta-Differential Evolution for Calculating and Predicting Glucose Levels
Popis výsledku v původním jazyce
A physiological model improves delivered healthcare, when constructing a medical device. Such a model comprises a number of parameters. While an analytical method determines model parameters, an evolutionary algorithm can improve them further. As evolutionary algorithms were designed on top of random-number generators, their results are not deterministic. This raises a concern about their applicability to medical devices. Medical-device algorithm must produce an output with a minimum guaranteed accuracy. Therefore, we applied de-randomized sequences to Meta-Differential Evolution instead of using a random-number generator. Eventually, we designed an optimization method based on zooming with derandomized sequences as an alternative to the Meta-Differential Evolution. As the experimental setup, we predicted glucose-level signal to cover a blind window of glucose-monitoring signal that results from a physiological lag in glucose transportation. Completely de-randomized differential evolution exhibited the same accuracy and precision as completely non-deterministic differential evolution. They produced 93% of glucose levels with relative error less than or equal to 15%.
Název v anglickém jazyce
De–randomized Meta-Differential Evolution for Calculating and Predicting Glucose Levels
Popis výsledku anglicky
A physiological model improves delivered healthcare, when constructing a medical device. Such a model comprises a number of parameters. While an analytical method determines model parameters, an evolutionary algorithm can improve them further. As evolutionary algorithms were designed on top of random-number generators, their results are not deterministic. This raises a concern about their applicability to medical devices. Medical-device algorithm must produce an output with a minimum guaranteed accuracy. Therefore, we applied de-randomized sequences to Meta-Differential Evolution instead of using a random-number generator. Eventually, we designed an optimization method based on zooming with derandomized sequences as an alternative to the Meta-Differential Evolution. As the experimental setup, we predicted glucose-level signal to cover a blind window of glucose-monitoring signal that results from a physiological lag in glucose transportation. Completely de-randomized differential evolution exhibited the same accuracy and precision as completely non-deterministic differential evolution. They produced 93% of glucose levels with relative error less than or equal to 15%.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1506" target="_blank" >LO1506: Podpora udržitelnosti centra NTIS - Nové technologie pro informační společnost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2019 IEEE 32nd International Symposium on Computer-Based Medical Systems
ISBN
978-1-72812-286-1
ISSN
2372-9198
e-ISSN
—
Počet stran výsledku
6
Strana od-do
269-274
Název nakladatele
IEEE Computer Society Conference Publishing Services (CPS)
Místo vydání
Los Alamitos
Místo konání akce
Cordóba
Datum konání akce
5. 6. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000502356600055