Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Gaussian Process Quadrature Moment Transform

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F18%3A43952475" target="_blank" >RIV/49777513:23520/18:43952475 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1109/TAC.2017.2774444" target="_blank" >https://doi.org/10.1109/TAC.2017.2774444</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TAC.2017.2774444" target="_blank" >10.1109/TAC.2017.2774444</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Gaussian Process Quadrature Moment Transform

  • Popis výsledku v původním jazyce

    Computation of moments of transformed random variables is a problem appearing in many engineering applications. The current methods for moment transformation are mostly based on the classical quadrature rules, which cannot account for the approximation errors. Our aim is to design a method for moment transformation of Gaussian random variables, which accounts for the error in the numerically computed mean. We employ an instance of Bayesian quadrature, called Gaussian process quadrature (GPQ), which allows us to treat the integral itself as a random variable, where the integral variance informs us about the incurred integration error. Experiments on the coordinate transformation and nonlinear filtering examples show that the proposed GPQ moment transform performs better than the classical transforms.

  • Název v anglickém jazyce

    Gaussian Process Quadrature Moment Transform

  • Popis výsledku anglicky

    Computation of moments of transformed random variables is a problem appearing in many engineering applications. The current methods for moment transformation are mostly based on the classical quadrature rules, which cannot account for the approximation errors. Our aim is to design a method for moment transformation of Gaussian random variables, which accounts for the error in the numerically computed mean. We employ an instance of Bayesian quadrature, called Gaussian process quadrature (GPQ), which allows us to treat the integral itself as a random variable, where the integral variance informs us about the incurred integration error. Experiments on the coordinate transformation and nonlinear filtering examples show that the proposed GPQ moment transform performs better than the classical transforms.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20205 - Automation and control systems

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA15-12068S" target="_blank" >GA15-12068S: Adaptivní přístupy k odhadu stavu nelineárních stochastických systémů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Transactions on Automatic Control

  • ISSN

    0018-9286

  • e-ISSN

  • Svazek periodika

    63

  • Číslo periodika v rámci svazku

    9

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    11

  • Strana od-do

    2844-2854

  • Kód UT WoS článku

    000443705900007

  • EID výsledku v databázi Scopus

    2-s2.0-85035117396