Improved Calibration of Numerical Integration Error in Sigma-Point Filters
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F21%3A43960635" target="_blank" >RIV/49777513:23520/21:43960635 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9084238" target="_blank" >https://ieeexplore.ieee.org/document/9084238</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TAC.2020.2991698" target="_blank" >10.1109/TAC.2020.2991698</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Improved Calibration of Numerical Integration Error in Sigma-Point Filters
Popis výsledku v původním jazyce
The sigma-point filters, such as the UKF, are popular alternatives to the ubiquitous EKF. The classical quadrature rules used in the sigma-point filters are motivated via polynomial approximation of the integrand, however in the applied context these assumptions cannot always be justified. As a result, quadrature error can introduce bias into estimated moments, for which there is no compensatory mechanism in the classical sigma-point filters. This can lead in turn to estimates and predictions that are poorly calibrated. In this article, we investigate the Bayes--Sard quadrature method in the context of sigma-point filters, which enables uncertainty due to quadrature error to be formalised within a probabilistic model. Our first contribution is to derive the well-known classical quadratures as special cases of the Bayes--Sard quadrature method. Based on this, a general-purpose moment transform is developed and utilised in the design of novel sigma-point filter, which explicitly accounts for the additional uncertainty due to quadrature error.
Název v anglickém jazyce
Improved Calibration of Numerical Integration Error in Sigma-Point Filters
Popis výsledku anglicky
The sigma-point filters, such as the UKF, are popular alternatives to the ubiquitous EKF. The classical quadrature rules used in the sigma-point filters are motivated via polynomial approximation of the integrand, however in the applied context these assumptions cannot always be justified. As a result, quadrature error can introduce bias into estimated moments, for which there is no compensatory mechanism in the classical sigma-point filters. This can lead in turn to estimates and predictions that are poorly calibrated. In this article, we investigate the Bayes--Sard quadrature method in the context of sigma-point filters, which enables uncertainty due to quadrature error to be formalised within a probabilistic model. Our first contribution is to derive the well-known classical quadratures as special cases of the Bayes--Sard quadrature method. Based on this, a general-purpose moment transform is developed and utilised in the design of novel sigma-point filter, which explicitly accounts for the additional uncertainty due to quadrature error.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1506" target="_blank" >LO1506: Podpora udržitelnosti centra NTIS - Nové technologie pro informační společnost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Automatic Control
ISSN
0018-9286
e-ISSN
—
Svazek periodika
66
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
7
Strana od-do
1286-1292
Kód UT WoS článku
000623420100029
EID výsledku v databázi Scopus
2-s2.0-85101821054