Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Towards Network Simplification for Low-Cost Devices by Removing Synapses

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F18%3A43952603" target="_blank" >RIV/49777513:23520/18:43952603 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/chapter/10.1007/978-3-319-99579-3_7" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-319-99579-3_7</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-99579-3_7" target="_blank" >10.1007/978-3-319-99579-3_7</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Towards Network Simplification for Low-Cost Devices by Removing Synapses

  • Popis výsledku v původním jazyce

    The deployment of robust neural network based models on low-cost devices touches the problem with hardware constraints like limited memory footprint and computing power. This work presents a general method for a rapid reduction of parameters (80–90%) in a trained (DNN or LSTM) network by removing its redundant synapses, while the classification accuracy is not significantly hurt. The massive reduction of parameters leads to a notable decrease of the model’s size and the actual prediction time of on-board classifiers. We show the pruning results on a simple speech recognition task, however, the method is applicable to any classification data.

  • Název v anglickém jazyce

    Towards Network Simplification for Low-Cost Devices by Removing Synapses

  • Popis výsledku anglicky

    The deployment of robust neural network based models on low-cost devices touches the problem with hardware constraints like limited memory footprint and computing power. This work presents a general method for a rapid reduction of parameters (80–90%) in a trained (DNN or LSTM) network by removing its redundant synapses, while the classification accuracy is not significantly hurt. The massive reduction of parameters leads to a notable decrease of the model’s size and the actual prediction time of on-board classifiers. We show the pruning results on a simple speech recognition task, however, the method is applicable to any classification data.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20205 - Automation and control systems

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LO1506" target="_blank" >LO1506: Podpora udržitelnosti centra NTIS - Nové technologie pro informační společnost</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Speech and Computer 20th International Conference, SPECOM 2018 Leipzig, Germany, September 18–22, 2018, Proceedings

  • ISBN

    978-3-319-99578-6

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Počet stran výsledku

    10

  • Strana od-do

    58-67

  • Název nakladatele

    Springer Nature Switzerland AG

  • Místo vydání

    Cham

  • Místo konání akce

    Leipzig, Germany

  • Datum konání akce

    18. 9. 2018

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku