A new soft rough set parameter reduction method for an effective decision-making
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F17%3A50013682" target="_blank" >RIV/62690094:18450/17:50013682 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.3233/978-1-61499-800-6-691" target="_blank" >http://dx.doi.org/10.3233/978-1-61499-800-6-691</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3233/978-1-61499-800-6-691" target="_blank" >10.3233/978-1-61499-800-6-691</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A new soft rough set parameter reduction method for an effective decision-making
Popis výsledku v původním jazyce
Decision-making involves several processes such as data pre-processing, data reduction and data selection. In order to assure a valuable solution is made, each of these processes needs to be successfully conducted. When dealing with complex data, parameter reduction is one of the essential processes that the decision-makers should take into account. It helps to reduce the processing time, computational memory and data dimensionality in the decision-making process. However, some of the parameter reduction methods were unable to generate a suboptimal value during the parameter reduction process. This problem could affect the performance of the classification process. Soft set theory is one of the parameter reduction methods that faces this kind of problem. As a result of the study, to enhance the capability of soft set parameter reduction method, an integration between soft set and rough set theories as a parameter reduction method had been proposed. It was based on the efficiency of these two theories in processing complex and uncertain data problems. These two methods were sequentially applied to simplify the initial parameters in order to improve the performance of the classification process. The experimental work had returned positive classification results and successfully assisted the standard soft set parameter reduction method in generating sub-optimal reduction set and also the classifier in the classification process.
Název v anglickém jazyce
A new soft rough set parameter reduction method for an effective decision-making
Popis výsledku anglicky
Decision-making involves several processes such as data pre-processing, data reduction and data selection. In order to assure a valuable solution is made, each of these processes needs to be successfully conducted. When dealing with complex data, parameter reduction is one of the essential processes that the decision-makers should take into account. It helps to reduce the processing time, computational memory and data dimensionality in the decision-making process. However, some of the parameter reduction methods were unable to generate a suboptimal value during the parameter reduction process. This problem could affect the performance of the classification process. Soft set theory is one of the parameter reduction methods that faces this kind of problem. As a result of the study, to enhance the capability of soft set parameter reduction method, an integration between soft set and rough set theories as a parameter reduction method had been proposed. It was based on the efficiency of these two theories in processing complex and uncertain data problems. These two methods were sequentially applied to simplify the initial parameters in order to improve the performance of the classification process. The experimental work had returned positive classification results and successfully assisted the standard soft set parameter reduction method in generating sub-optimal reduction set and also the classifier in the classification process.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Frontiers in Artificial Intelligence and Applications
ISBN
978-1-61499-799-3
ISSN
0922-6389
e-ISSN
neuvedeno
Počet stran výsledku
14
Strana od-do
691-704
Název nakladatele
IOS press
Místo vydání
Amsterdam
Místo konání akce
Kitakyushu; Japan
Datum konání akce
26. 9. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—